Översvämningskartering utmed Svartån-Hjälmaren-Eskilstunaån

Med detaljerad översvämningskartering för det identifierade området med betydande översvämningsrisk, Örebro-området

Sträckan från Toften till Mälaren
Arbetet är utfört på uppdrag av
Myndigheten för samhällsskydd och beredskap, 651 81 Karlstad, Tel 0771-240 240,
av DHI Sverige AB, Drakegatan 6, 412 50 Göteborg, Tel 010-685 08 00

Att mångfaldiga det innehåll i denna rapport som tillhör Myndigheten för samhällsskydd och
beredskap, helt eller delvis, är tillåtet förutsatt att MSB anges som källa.

Lantmäteriet har rättigheterna till bakgrundskartorna i rapporten.

MSB diarienr MSB 2013-2992
Konsult ärendenr 12804206
Innehållsförteckning

1. Inledning .. 8
2. Allmänt om översvämningskartering ... 9
 2.1 Flöden och återkomsttid .. 9
 2.2 Översvämningskartering av Svartån-Hjälmaren-Eskilstunaån... 10
 2.3 Framtagning av nya detaljerade översvämningskartor för Örebro .. 11
 2.4 Användning av översvämningskartor ... 11
 2.4.1 Användning av detaljerade översvämningskartor ... 11
 2.5 Immateriella rättigheter ... 11
3. Beräkningar - förutsättningar och genomförande................................... 13
 3.1 Beräkning av flöden .. 13
 3.2 Modellbeskrivning av vattendraget .. 15
 3.3 Hydrauliska beräkningar .. 16
 3.3.1 Antaganden ... 16
 3.3.2 Kalibrering .. 17
 3.4 Framtagning av översvämningskartor ... 19
4. Resultat .. 20
 4.1 Modell- och vattenståndsberäkningar .. 20
 4.1.1 50-årsflöde för det detaljerade området ... 20
 4.1.2 100-årsflöde .. 20
 4.1.3 200-årsflöde ... 20
 4.1.4 Beräknat högsta flöde .. 21
 4.1.5 Hjälmarens vattenstånd .. 21
 4.2 Diskussion ... 22
5. Litteraturförteckning .. 23

Bilaga 1: Beskrivning av översvämningsskikt producerade med endimensionell (1D) hydraulisk modell som levereras i digitalt format .. 24

ArcGIS format: ... 25

Bilaga 2: Detaljerad översvämningskartering för identifierat område med betyande översvämningsrisk. Kartering utförd med tvådimensionell (2D) hydraulisk modell. ... 26

Bilaga 3: Kartor med utbredningsområden för hela vattendraget, kartering med både endimensionell och tvådimensionell hydraulisk modell. .. 28
Bilaga 4: Kartor med detaljerad översvämningskartering för tätorten Örebro. Kartering med tvådimensionell hydraulisk modell. ... 54

Bilaga 5: Detaljerad översvämningskartering för tätorten Örebro. Vattendjup... 61

Bilaga 6: Detaljerad översvämningskartering för tätorten Örebro. Flödeshastighet. .. 86

Bilaga 7: Komplett flödestabell. ... 112

Till denna rapport hör GIS-skikt där översvämningszonerna finns i format för ArcGIS för GIS-användning. GIS-skikten laddas ner via översvämningsportalen https://gisapp.msb.se/apps/oversvamningsportal/
Sammanfattning

DHI Sverige AB har på uppdrag av Myndigheten för samhällsskydd och beredskap (MSB) uppdaterat den detaljerade översvämningskarteringen för Örebro-området, vilken ingår i den tidigare översvämningskarteringen utmed Svartån–Hjälmaren–Eskilstunaån, sträckan från Toften till utloppet i Mälaren [1].

Den uppdaterade karteringen för Örebro-området inkluderar längre sträckor av biflödena Lillån och Älvtomtabäcken jämfört med tidigare, nya uppgifter om vallen vid Rynninge, samt en uppdaterad kalibrering av den hydrauliska modellen inom Örebro (se Tabell 3). Flöden och randvillkor i scenarierna är desamma som tidigare. Följande kartor i rapporten har uppdaterats: kartblad nr 4, 5 och 6 i bilaga 3, samt alla kartor i bilaga 4, 5 och 6.

Kartläggningen är detaljerad och kan användas för planering av räddningstjänstens insatsarbete och som underlag vid kommunens riskhantering och samhällsplanering.

BHF-flödet är beräknat enligt Flödeskommitténs riktlinjer för dammdimensionering (dammar i Flödesdimensioneringsklass 1) [2].

Översvämningszonerna levereras som kartor i denna rapport, samt som kartskikt i digital form för hantering i Geografiska InformationsSystem (GIS). Kartskikten levereras i format för ArcGIS.

Ur tvärsektionsfilen kan information om nivåer för vattenstånd för respektive flöde utläsas för den del av vattendraget som karteras med endimensionell modell (1D-modell).

Vid användning av detaljerade översvämningskartor rekommenderas för den endimensionella delen en högsta upplösning i skala 1:10 000 och för den tvådimensionella delen 1:5 000 då beräkningarna av översvämningszoner baseras på en beskrivning av vattendragets och det omkringliggande landskapets topografi och egenskaper.
Den hydrauliska datamodell som tas fram under karteringsarbetet kan användas under en pågående översvämning för att beräkna aktuella vattendämtnivåer för kritiska områden utmed vattendraget.
1. Inledning

Karteringsarbetet består av flera delmoment som omfattar flödesberäkningar, hydrauliska modellberäkningar och GIS-hantering. Flödesberäkningarna har utförts av SMHI. De hydrauliska beräkningarna har utförts av Ola Nordblom, DHI och GIS-arbetet har utförts av Simone McCurdy, DHI. Ola Nordblom har samordnat projektet och svarat för rapporten.
2. Allmänt om översvämningskartering

För att kunna beräkna vattennivåer och utbredningen av en översvämning för ett flöde med en viss återkomsttid används en hydraulisk datamodell. Modellen innehåller information om flöden, höjddata och strukturer i vattendraget såsom broar och dammar samt andra fysiska strukturer som påverkar vattnets rörelser. Modellen innehåller också uppgifter om vattendragets övriga egenskaper som lutning och bottenfriktion samt landskapets topografi, geometri och friktion. Slutligen kalibreras modellen mot tidigare mätningar av vattenstånd och vattenföring.

2.1 Flöden och återkomsttid

Som mått på översvämningsrisken används ofta begreppet återkomsttid, vilket betecknar den genomsnittliga tiden mellan två översvämnings av samma omfattning. Begreppet återkomsttid ger dock en falsk känsla av säkerhet, eftersom det anger sannolikheten för ett enda år och inte den sammanlagda sannolikheten för en period av flera år.

Tabell 1 visar den sammanlagda sannolikheten för att ett flöde med en viss återkomsttid ska överskridas under en längre tidsperiod. Ett flöde med återkomsttiden 100 år har till exempel 40 procents sannolikhet att inträffa under en 50-årsperiod och ett flöde med återkomsttiden 10 000 år har 1 procents sannolikhet att inträffa under en 100-årsperiod.

Tabell 1
Sannolikhet för ett visst flöde uttryckt i procent under en period av år.

<table>
<thead>
<tr>
<th>Flöde</th>
<th>10 år</th>
<th>50 år</th>
<th>100 år</th>
<th>200 år</th>
<th>500 år</th>
<th>1 000 år</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-årsflöde</td>
<td>40</td>
<td>92</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>50-årsflöde</td>
<td>18</td>
<td>64</td>
<td>87</td>
<td>98</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100-årsflöde</td>
<td>10</td>
<td>40</td>
<td>63</td>
<td>87</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>200-årsflöde</td>
<td>5</td>
<td>22</td>
<td>39</td>
<td>63</td>
<td>92</td>
<td>99</td>
</tr>
<tr>
<td>1 000-årsflöde</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>18</td>
<td>39</td>
<td>63</td>
</tr>
<tr>
<td>10 000-årsflöde</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>9,5</td>
</tr>
</tbody>
</table>
Det är svårt att beräkna flöden med mycket långa återkomsttider (1 000 år eller mer) och osäkerheten blir stor. Normalt finns det mindre än 100 års observationer att utgå ifrån och i reglerade system är de observerade vattenföringsserierna kortare.

Översvämningskartorna har producerats för tre nivåer samt en fjärde nivå för Örebro. Dessa nivåer motsvarar ett flöde med 100 års återkomsttid (100-årsflödet), 200 års återkomsttid (200-årsflödet) respektive beräknat högsta flöde. För Örebro har även ett flöde med 50 års återkomsttid (50-årsflödet) använts.

100-årsflödet och 200-årsflödet har klimatanpassats för den flödessituation som förväntas gälla vid slutet av seklet.

Beräkning av 50-årsflöde, 100-årsflöde och 200-årsflöde görs normalt genom statistisk analys av observerade vattenföringsserier. När det gäller beräknat högsta flöde blir en sådan uppskattning alltför osäker då det inte finns tillgång till tillräckligt långa observationsserier. Istället har framtagna beräknat högsta flöde skett i enlighet med Flödeskommitténs riktlinjer för dammdimensionering (dammar i Flödesdimensioneringsklass I, nedan benämnt FDK I) [2], beräknat i en hydrologisk modell. Beräkningen bygger på en systematisk kombination av kritiska faktorer som bidrar till ett flöde (regn, snösmältning, hög markfuktighet, högt vattenstånd i sjöar samt magasinsfyllning i reglerade vattendrag). Någon återkomsttid kan inte anges för detta flöde, den ligger dock i storleksordningen cirka 10 000 år.

2.2 Översvämningskartering av Svartån-Hjälmaren-Eskilstunaån

2.3 Framtagning av nya detaljerade översvämningskartor för Örebro

Svartån rinner genom tätorten Örebro för vilken en detaljerad översvämningskartering har framställts med en tvådimensionell modell. Även de centralt belägna biflödena Älvtomtabäcken och Lillån har inkluderats i den detaljerade modellen.

Flöden för vilka utbredningsområden karteras är i detta fall 50-årsflöde (dagens klimat), 100-årsflöde (klimatanpassat), 200-årsflöde (klimatanpassat) och beräknat högsta flöde (dagens klimat).

Den tvådimensionella modellen beräknar vattennivåer och utbredning i ett rutnät. Resultatet presenteras i en rasterfil (se bilaga 2). Rasterfilen innehåller även information om vattendjup och vattenhastighet.

2.4 Användning av översvämningskartor

Kartläggningen är detaljerad och kan användas för insatsplanering av räddningstjänstens arbete och som underlag vid kommunens riskhantering och samhällsplanering.

Den hydrauliska datamodellen kan användas under en pågående översvämning. Den kalibreras efter de aktuella flödena. Vattenstånd för den pågående översvämnningen kan beräknas för kritiska områden utmed vattendraget och de nya uppgifterna levereras till räddningstjänster och övriga berörda.

Vid användning av översvämningskartorna rekommenderas en högsta upplösning i skala 1:10 000 för den endimensionella delen.

100-årsflödet och 200-årsflödet har anpassats till ett förväntat klimat vid slutet av seklet vilket måste tas hänsyn till vid användning av informationen.

2.4.1 Användning av detaljerade översvämningskartor

De detaljerade översvämningskartorna kan användas som ett noggrannare beslutsunderlag för det karterade området. Vid användning av översvämningskartorna rekommenderas en högsta upplösning i skala 1:5 000 för den tvådimensionella delen.

100-årsflödet och 200-årsflödet har anpassats till ett förväntat klimat vid slutet av seklet vilket måste tas hänsyn till vid användning av informationen.

2.5 Immateriella rättigheter

MSB har upphovsrätt till de av MSB framtagna översvämningskarteringarna som skyddas av upphovsrättslagen (1960:729). Innehållet i rapporter och digitala kartskikt (GIS-skikt) får mångfaldigas, helt eller delvis, förutsatt att MSB anges som källa.
Allt ansvar vid nyttjandet av rapporterna och GIS-skikten vilar på användaren. MSB fråntar sig allt ansvar för produktens funktion eller användbarhet för något visst ändamål. Vid användning av översvämningskartorna rekommenderas för den endimensionella delen en högsta upplösning i skala 1:10 000 och för den tvådimensionella delen 1:5 000.

Rättigheter till underlagskartor i rapporten tillhör Lantmäteriet och får inte nyttjas utan Lantmäteriets tillstånd.
3. Beräkningar - förutsättningar och genomförande

3.1 Beräkning av flöden

Flöden för respektive återkomsttid beräknas med hjälp av flödesdata från en hydrologisk station i vattendraget eller med modellberäknade flödesdata.

50-årsflödet, 100-årsflödet och 200-årsflödet

SMHI förvaltar ett rikstäckande observationsnät med hydrologiska stationer för vilka historiska flödes- och vattenståndsserier har tagits fram. Flöden med en återkomsttid på 50, 100 och 200 år har tagits fram med individuella beräkningar för varje plats och bygger på frekvensanalys av vattenföringsserier från stationsnätet. Saknas mätstation i det kartereda vattendraget har statistik från närbelägna stationer i liknande vattendrag använts. Beräkningsmetoden uppfyller kraven som ställs på dimensioneringsunderlag för klass II-dammar enligt Flödeskommitténs riktlinjer [2].

Osäkerheten i de framtagna flödena blir större med ökad återkomsttid.

Klimatkompenserade flöden

100-årsflödet och 200-årsflödet har klimatanpassats för att motsvara förväntade flöden med samma återkomsttid vid slutet av seklet. Klimatpåverkan har beräknats enligt en metodik beskriven av Andréasson m.fl. [4]. Beräkningarna har gjorts med 16 regionala klimatscenarier för perioden fram till 2050 och 12 motsvarande scenarier fram till slutet av seklet. Dessa har skalats ner med bästa tillgängliga teknik och därefter anpassats till hydrologisk modellering.

De hydrologiska beräkningarna har gjorts med en nationellt täckande och regionalt kalibrerad hydrologisk modell bestående av 1001 delområden där förändringar av flöden mellan valda tidsperioder beräknats. Resultaten för det delavrinningsområde som bedömts som mest representativt för den aktuella punkten har sedan redovisats och rapporterats.

Beräknat högsta flöde

Beräknat Högsta Flöde (BHF) beräknas med en hydrologisk modell avsedd för högvattenföringar. Vid SMHI:s beräkningar används normalt HBV-modellen [5]. Beräkningsmetoden motsvarar den teknik som används för vattenkrafts- och gruvindustrins dimensionering av högriskdammar (klass 1) [2].
Flöden använda i karteringen

Flödena i karteringen har tagits fram för nedanstående platser i Tabell 2 [6]. I bilaga 7 finns en utökad tabell som innehåller värden för 100-årsflöden och 200-årsflöden i dagens klimat. I den utökade tabellen anges även om de klimatanpassade 100- och 200-årsflödena når ett maxvärde under någon klimatperiod innan slutet av seklet.

Flöden med en återkomsttid på 50, 100 och 200 år är framräknade med hjälp av frekvensanalys på vattenföringsserier och baseras främst på serierna från Hasselfors (med stationsnummer 61-1219), Backa övre (61-1374), Hidingebro (61-2413), Karlslund (61-2139) och Övre Hyndevad (61-1374).

Beräknat högsta flöde har erhållits genom beräkning i HBV-modellen [5], förutom för biflödena Lillån och Älvtomtabäcken där flödena har uppskattats.

Flödena samt deras hydrografer har använts som inflöde till den hydrauliska modellen och har arealviktats för att utnyttjas vid skattning av tillrinnande biflöden.

Tabell 2

På följande platser har 50-årsflöden, 100-årsflöden, 200-årsflöden och beräknade högsta flöden enligt Flödeskommitténs riktlinjer för dammar i Flödesdimensioneringsklass I beräknats.

<table>
<thead>
<tr>
<th>Plats för beräknat flöde</th>
<th>50-årsflöde [m³/s]</th>
<th>100-årsflöde vid slutet av seklet [m³/s]</th>
<th>200-årsflöde vid slutet av seklet [m³/s]</th>
<th>BHF [m³/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svartån utlopp Toften</td>
<td></td>
<td>56</td>
<td>61</td>
<td>113</td>
</tr>
<tr>
<td>Svartån utlopp Teen</td>
<td></td>
<td>66</td>
<td>72</td>
<td>121</td>
</tr>
<tr>
<td>Svartån Backa övre</td>
<td></td>
<td>84</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Svartån Hidingebro</td>
<td></td>
<td>101</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Svartån Karlslund, tätort Örebro</td>
<td>109</td>
<td>134</td>
<td>146</td>
<td>351</td>
</tr>
<tr>
<td>Älvtomtabäcken, mynning Svartån</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Lillån, mynning Svartån</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>43</td>
</tr>
<tr>
<td>Eskilstunaån utlopp Hjälmaren</td>
<td>150</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eskilstunaån vid Hyndevad</td>
<td></td>
<td>148</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Inlopp i Mälaren, tätort Eskilstuna</td>
<td>119</td>
<td>175</td>
<td>191</td>
<td>198</td>
</tr>
</tbody>
</table>

Randvillkor vattenstånd RH 2000

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hjälmaren</td>
<td>+22,67</td>
<td>+22,71</td>
<td>+22,71</td>
<td>+22,9</td>
</tr>
<tr>
<td>Mälaren</td>
<td>+1,2</td>
<td>+1,3</td>
<td>+1,3</td>
<td>+1,4</td>
</tr>
</tbody>
</table>
3.2 Modellbeskrivning av vattendraget

I översvämningskarteringen av Svartån–Hjälmaren–Eskilstunaån har både en endimensionell och en tvådimensionell hydraulisk modell använts.

Fördelen med tvådimensionella modeller framför endimensionella är möjligheten att på ett mer korrekt sätt beskriva översvämningsförlopp i flack terräng som i till exempel deltan eller i kraftigt meandrande vattendrag.

Karteringen av Svartån–Hjälmaren–Eskilstunaån innehåller segment med både endimensionella och tvådimensionella beräkningar. Två separata endimensionella beräkningsmodeller har använts i karteringen, en för Svartån från sjön Toften ned till Hjälmaren och en för Eskilstunaån från Hjälmaren till utloppet i Mälaren.

För det område som har identifierats ha betydande översvämningsrisk enligt förordningen (2009:956) om översvämningsrisk har tvådimensionella beräkningar använts. Den tvådimensionella modellen börjar cirka 1,5 km uppströms Karlslund och sträcker sig ned till utloppet i Hjälmaren. Modellen inkluderar även biflödet Ålvtomtabäcken från N Runnaby till Svartån, samt biflödet Lillån från Tjusebotorp (norrm o Lundby) till Svartån.

I den mån befintliga invallningar beskrivs i höjdmodellen finns dessa med i karteringen. Längs Eskilstunaån finns en invallad sträcka på ca 6 km med i
modellbeskrivningen. Vallen går genom och nedströms Eskilstuna. Befintlig vall längs med Lillån vid Rynninge i Örebro har tagits med i modellen och baseras på uppgifter från Örebro kommun [9].

För de områden med detaljerad översvämningskartering där en tvådimensionell modell har använts beräknas nivåer och utbredning samtidigt med GSD-höjddata grid 2+ som underlag.

Modellen över Svartån–Hjälmaren–Eskilstunaån omfattar totalt cirka 156 km, varav Svartån cirka 62 km och Eskilstunaån 38,5 km. I Svartån redovisas 84 tvärsektioner i den endimensionella delen uppströms det detaljerade området i Örebro, respektive 208 tvärsektioner inom det detaljerade området. I Eskilstunaån redovisas 93 tvärsektioner.

3.3 Hydrauliska beräkningar

3.3.1 Antaganden

Följande antaganden har gjorts vid beräkningarna:

- Alla dammar och broar står kvar vid höga flöden.
- Simuleringarna bygger på att vattnet är rent. I verkligheten följer träd, buskar och jord med.
- Simuleringarna förutsätter att alla vägbankar är täta. I verkligheten kan de vara genomsläppliga eller så kan det finnas trummor som vattnet kan rinna igenom. Här spelar kommunens lokalkännedom en viktig roll.
- Vid dammar har antagits att tappning motsvarande produktionsstillstånd sker upp till dämningsgräns, däröver antas att alla utskov är helt öppna.
- Ingen tappning sker genom kraftverkens turbiner vid de flöden som har simulerats.
• Vid det simulerade 50-årsflödet har Hjälmarens nivå satts till +22,67 m i höjdsystem RH 2000, motsvarande dagens medelhögvattenstånd, MHW\(^1\) [13].

• Vid framtida 100- och 200-årsflöden har Hjälmarens nivå satts till +22,71 m, motsvarande ett framtida MHW [14]. Vid BHF har Hjälmarens nivå satts till +22,9 m i RH 2000, vilket motsvarar det högsta uppmätta vattenståndet, HHW\(^2\) [13]. I Tabell 2 visas en sammanställning av de flöden och nivåer som har använts i respektive scenario.

• Vid det simulerade 50-årsflödet har Mälarens nivå satts till +1,2 m i höjdsystem RH 2000, motsvarande dagens medelhögvattenstånd, MHW [13]. Vid framtida 100- och 200-årsflöden har Mälarens nivå satts till 1,3 m, motsvarande ett framtida MHW [14]. Vid BHF har Mälarens nivå satts till +1,4 m i RH 2000, vilket motsvarar det högsta uppmätta vattenståndet, HHW [13]. I Tabell 2 visas en sammanställning av de flöden och nivåer som har använts i respektive scenario.

• Den framtida ökningen av vattenståndet i Mälaren har tagits fram inom SMHIs arbete med Mälarens framtida reglering på uppdrag av Stockholms stad [13] och tar hänsyn till förväntade tillrinningsförändringar, havets nivå, planerad regleringsstrategi samt utbyggd tappningskapacitet.

• Ingen hänsyn har tagits till vind- och vågpåverkan vid beräkning av vattenstånd. Vid storm kan snedställningen av Hjälmarens yta uppgå till 5 dm i Storhjälmarens långdriktning och överstiga 3 dm vid Svartåns mynnning. Vågornas inverkan går inte att generalisera för Hjälmarens stränder då effekten är starkt beroende av strandavsnittets utsatthet och bottentopografi [8].

3.3.2 Kalibrering

Vid kalibrering försöker man återskapa ett tidigare känt flödestillfälle. Vid modellens ”kalibreringspunkter”, som kan vara vattenstånd vid dammar eller broar, kalibreras vattenståndet in till ca ± 2,0 decimeters noggrannhet.

Uppströms Karlslund har modellen kalibrerats mot nivåer vid dammarna Toften, Teen, Backa och Hidingebro.

I Eskilstunaån har modellen kalibrerats mot observerade nivåer i dammarna vid Hyndevad, Rosenholm, Skjulsta, Tunafors, Faktoridammarna, Holmes

\(^1\) MHW: medelvärdet av varje års högsta vattenstånd

\(^2\) HHW: högsta uppmätta vattenstånd i en tidsserie, oavsett seriens längd
regleringsdamm samt Stora Kvarnfallet under högflödessituationen sommaren 2000.

Tabell 3

På följande platser har modellen kalibrerats inom det detaljerade området Örebro. Jämförelse mellan kalibreringsnivåer och beräknade vattennivåer.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Svartån, Karlsnäs</td>
<td>28,9</td>
<td>28,84</td>
</tr>
<tr>
<td>Svartån, Pegel Karlslund</td>
<td>28,7</td>
<td>28,79</td>
</tr>
<tr>
<td>Svartån, Hästhagen</td>
<td>28,35</td>
<td>28,45</td>
</tr>
<tr>
<td>Svartån, Hängbron</td>
<td>27,9</td>
<td>27,92</td>
</tr>
<tr>
<td>Svartån, Hagabron</td>
<td>27,65</td>
<td>27,53</td>
</tr>
<tr>
<td>Svartån, Vasabron</td>
<td>27,30</td>
<td>27,35</td>
</tr>
<tr>
<td>Svartån, Storbron</td>
<td>27,05</td>
<td>27,19</td>
</tr>
<tr>
<td>Svartån, Kanslibron</td>
<td>26,2</td>
<td>26,50</td>
</tr>
<tr>
<td>Älvtomtabäcken, Postgatan</td>
<td>30,3</td>
<td>30,20</td>
</tr>
<tr>
<td>Lillån, Hagaby</td>
<td>25,1</td>
<td>25,05</td>
</tr>
<tr>
<td>Lillån, Holmen</td>
<td>24,9</td>
<td>24,89</td>
</tr>
<tr>
<td>Lillån, Storgatan</td>
<td>24,7</td>
<td>24,72</td>
</tr>
<tr>
<td>Lillån, Skolgatan</td>
<td>24,6</td>
<td>24,35</td>
</tr>
<tr>
<td>Lillån, Rynninge, Strandv 11</td>
<td>23,8</td>
<td>23,6</td>
</tr>
<tr>
<td>Lillån, Rynninge, Strandv 53</td>
<td>23,2</td>
<td>23,3</td>
</tr>
</tbody>
</table>
3.4 Framtagning av översvämningskartor

För de endimensionella delarna har det geografiska informationssystemet ArcGIS använts för interpolering av beräknade vattenstånd mellan tvärsektionerna för att beräkna översvämningsens geografiska utbredning. Vattnet tillåts översvämma sidofåror till huvudfårans vattennivå. För beskrivning av topografin har samma höjddata använts som vid konstruktionen av tvärsektioner.

För det område där en tvådimensionell modell har använts beräknas nivåer och utbredning samtidigt i ett s.k. beräkningsnät baserat på höjdmodellen, men med grövre upplösning. Därefter överförs resultaten till höjdmodellens finare upplösning (2x2 m) genom interpolering i ArcGIS.
4. Resultat

Utbredningsområdet för översvämning vid respektive flöde visas i rapporten på kartor i skala 1:50 000 (bilaga 3). För det detaljerade området visas utbredningen i skala 1:20 000 (bilaga 4). Bakgrundskartan är Terrängkarten i skala 1:50 000 [15], samt Fastighetskarten i skala 1:20 000 [7].

Det geografiska informationssystemet ArcGIS har utnyttjats för interpolering mellan tvärsektionerna inför presentation av resultatet på karta.

4.1 Modell- och vattenståndsberäkningar

4.1.1 50-årsflöde för det detaljerade området

Med befintliga antaganden och ingångsdata överströmmas inga broar vid 50-årsflödet.

Med befintliga antaganden och ingångsdata överströmmas inga dammar vid 50-årsflödet.

4.1.2 100-årsflöde

Med befintliga antaganden och ingångsdata överströmmas inga broar i Svartån eller Eskilstunaån vid 100-årsflödet.

Med befintliga antaganden och ingångsdata överströmmas inga dammar i Svartån eller Eskilstunaån vid 100-årsflödet.

4.1.3 200-årsflöde

Med befintliga antaganden och ingångsdata överströmmas inga dammar i Svartån eller Eskilstunaån vid 200-årsflödet.
4.1.4 Beräknat högsta flöde

I biflödet Älvtomtabäcken i Örebro överströmmas bron vid Sandbackavägen, bron vid Postgatan-Vaktelvägen, samt en del av vägbanan vid Karlslundsgatan och Grindgatan väster om de kulverterade nedre delarna av Älvtomtabäcken. I biflödet Lillån i Örebro överströmmas broarna vid E18/E20, Törngatan, Östra Bangatan, Polhemsgatan, Storgatan, Skolgatan och Grenadjärgatan.

I Eskilstunaån överströmmas bron vid Vilsta samt vägbanan vid sidan om bron vid väg 214 vid Husby samt vägbanan vid sidan om Rådhusbron.

Med befintliga antaganden och ingångsdata överströmmas dammarna vid Lindbacka och Slussen vid beräknat högsta flöde i Svartån.

4.1.5 Hjälmarens vattenstånd

I Tabell 4 redovisas de vattennivåer som är representativa för Hjälmaren vid de olika typerna av flödesscenarier.
Tabell 4
Sammanställning av nivåer i Hjälmaren för 100-årsflöde, 200-årsflöde samt BHF i Svartån respektive Eskilstunaån.

<table>
<thead>
<tr>
<th>Beräkningsscenario</th>
<th>Nivå i Hjälmaren [m, RH 2000] vid flödesscenario i Svartån</th>
<th>Nivå i Hjälmaren [m, RH 2000] vid flödesscenario i Eskilstunaån</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-årsflöde år 2098</td>
<td>22,71</td>
<td>23,1</td>
</tr>
<tr>
<td>200-årsflöde år 2098</td>
<td>22,71</td>
<td>23,19</td>
</tr>
<tr>
<td>BHF</td>
<td>22,9</td>
<td>23,25</td>
</tr>
</tbody>
</table>

4.2 Diskussion

Noggrannheten i beräknade nivåer ligger inom ca ± 2,0 decimeter i kalibreringspunkterna, vilket är punkter där vattennivån har observerats under ett tidigare högflöde. Modellens noggrannhet gäller för flöden av ungefär samma storlek som kalibreringsflödet, vilket i Svartån ungefär motsvarar ett 50-årsflöde. I andra delar av vattendraget och för andra flöden, högre eller lägre, är osäkerheten större. Speciellt är osäkerheten större vid BHF-flödet, jämfört med de tre lägre flödesscenarierna, eftersom BHF-flödet skiljer sig avsevärt från det flöde modellen har kalibrerats för.

Osäkerheten i beräknad översvämningsutbredning beror dels på osäkerheten i beräknad nivå, dels på felet i höjdimodellen. Höjdimodellen uppges ha ett generellt medelfel som är mindre än 0,5 m i höjd. På plana och väldefinierade ytor ska felet vara mindre än 0,2 m i höjd [3].

I vissa fall kan den beräknade översvämningsutbredningen underskatta den verkliga utbredningen p.g.a. att det tillgängliga dataunderlaget inte innehåller den detaljninformation som krävs för att avgöra om naturliga eller anlagda barriärer i terrängen, t.ex. vägbankar, tillåter vattnet att passera igenom via vägtrummor eller liknande.
5. Litteraturförteckning

Bilaga 1: Beskrivning av översvämningsskikt producerade med endimensionell (1D) hydraulisk modell som levereras i digitalt format

För vattendrag som karterats med 1D-hydraulisk modell levereras två ytskikt per flödesscenario och ett linjeskikt per karterat vattendrag. Dessutom levereras tre rasterfiler per flödesscenario. Totalt levereras 22 skikt.

För rasterfilerna vilka tillsammans med utbredningsskikten motsvarar den detaljerade översvämningsskarteringen för identifierade områden med betydande översvämningsrisk, se vidare i bilaga 2.

Ytskikten består av resultat- och temafiler.
Filerna "Resultat_Qxxx" redovisar översvämningssytan för respektive flödesscenario samt ytorna för öar/enklaver omgivna av översvämningssytan.

Filerna "Tema_Qxxx" redovisar endast översvämningssytan för respektive flödesscenario. Detta för att möjliggöra att snabbt få en överblick och visualisera den markyta som hotas av en översvämning för respektive flöde.

Linjeskiktet "T_sektion_1D" redovisar tvärsektionerna utmed vattendraget. Varje tvärsektion redovisar vattennivåerna för respektive flöde och innehåller medelvärden för hela tvärsnittet gällande vattennivå och vattenhastighet för respektive flödesscenario.

För de fall där även linjeskikt "T_sektion_2D" levereras se bilaga 2.
ArcGIS format:

<table>
<thead>
<tr>
<th>Ytsskikt</th>
<th>Filnamn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Översvämningsytan för 50-årsflöde (Gridcode=1) samt ytorna för öar/enklaver (Gridcode=0). Area (m²)</td>
<td>Resultat_Q50.shp</td>
</tr>
<tr>
<td>Översvämningsytan för 100-årsflöde* inkl (Gridcode=1) samt ytorna för öar/enklaver (Gridcode=0). Area (m²)</td>
<td>Resultat_Q100.shp</td>
</tr>
<tr>
<td>Översvämningsytan för 200-årsflöde* (Gridcode=1) samt ytorna för öar/enklaver (Gridcode=0). Area (m²)</td>
<td>Resultat_Q200.shp</td>
</tr>
<tr>
<td>Översvämningsytan för beräknat högsta flöde (Gridcode=1) samt ytorna för öar/enklaver (Gridcode=0). Area (m²)</td>
<td>Resultat_Qbhf.shp</td>
</tr>
<tr>
<td>Översvämningsytan för 50-årsflöde (Gridcode=1). Area (m²)</td>
<td>Tema_Q50.shp</td>
</tr>
<tr>
<td>Översvämningsytan för 100-årsflöde* (Gridcode=1). Area (m²)</td>
<td>Tema_Q100.shp</td>
</tr>
<tr>
<td>Översvämningsytan för 200-årsflöde* (Gridcode=1). Area (m²)</td>
<td>Tema_Q200.shp</td>
</tr>
<tr>
<td>Översvämningsytan för beräknat högsta flöde. (Gridcode=1). Area (m²)</td>
<td>Tema_Qbhf.shp</td>
</tr>
</tbody>
</table>

*Klimatanpassat flöde för slutet av seklet.

Linjeskikt	Filnamn
Tvärsektioner för respektive vattendrag | T_sektion_1D.shp

Tvärsektionsfilen T_sektion_1D innehåller följande information per sektion:

<table>
<thead>
<tr>
<th>Attribut</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unikt ID för varje tvärsektion</td>
</tr>
<tr>
<td>Vattendrag</td>
<td>Namn på huvudfåra</td>
</tr>
<tr>
<td>Biflode</td>
<td>Namn på biflode</td>
</tr>
<tr>
<td>Avst</td>
<td>Avstånd längs vattendraget med startvärde = noll vid källan (m)</td>
</tr>
<tr>
<td>Bredd</td>
<td>Tvärsektionens bredd (m)</td>
</tr>
<tr>
<td>Grans1D_2D</td>
<td>Värde anger gräns mellan 1D och 2D kartering: 0=tvärsektion som inte gränser till 2D kartering, 1= uppströms gräns, 2= nedströms gräns</td>
</tr>
<tr>
<td>50_Z</td>
<td>50-årsflödets höjdvärde i RH 2000 (m.ö.h.)</td>
</tr>
<tr>
<td>100_Z</td>
<td>100-årslödets höjdvärde i RH 2000 (m.ö.h.)*</td>
</tr>
<tr>
<td>200_Z</td>
<td>200-årslödets höjdvärde i RH 2000 (m.ö.h.)*</td>
</tr>
<tr>
<td>BHF_Z</td>
<td>Höjdvärdet för beräknat högsta flöde i RH 2000 (m.ö.h.)</td>
</tr>
<tr>
<td>50_V</td>
<td>50-årslödets hastighet, sektionsmedelvärde (m/s)</td>
</tr>
<tr>
<td>100_V</td>
<td>100-årslödets hastighet, sektionsmedelvärde (m/s)*</td>
</tr>
<tr>
<td>200_V</td>
<td>200-årslödets hastighet, sektionsmedelvärde (m/s)*</td>
</tr>
<tr>
<td>BHF_V</td>
<td>Hastigheten för beräknat högsta flöde, sektionsmedelvärde (m/s)</td>
</tr>
</tbody>
</table>

*Klimatanpassat flöde för slutet av seklet.
Bilaga 2: Detaljerad översvämningskartering för identifierat område med betydande översvämningsrisk. Kartering utförd med tvådimensionell (2D) hydraulisk modell.

Tre rasterfiler per flödesscenario levereras i gridformat (.adf) som kan läsas av GIS-programvaran ArcGIS.

Data levereras i referenssystem SWEREF 99 TM och höjdsystem RH 2000. Rasterfilernas upplösning är 2 x 2 m.

<table>
<thead>
<tr>
<th>Rasterdata</th>
<th>Filnamn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vattendjup (m) för 50-årsflödet</td>
<td>q_50_djup</td>
</tr>
<tr>
<td>Vattenhastighet (m/s) för 50-årsflödet</td>
<td>q_50_hastigh</td>
</tr>
<tr>
<td>Vattenytans nivå (m.ö.h.) för 50-årsflödet</td>
<td>q_50_moh</td>
</tr>
<tr>
<td>Vattendjup (m) för 100-årsflödet*</td>
<td>q_100_djup</td>
</tr>
<tr>
<td>Vattenhastighet (m/s) för 100-årsflödet*</td>
<td>q_100_hastigh</td>
</tr>
<tr>
<td>Vattenytans nivå (m.ö.h.) för 100-årsflödet*</td>
<td>q_100_moh</td>
</tr>
<tr>
<td>Vattendjup (m) för 200-årsflödet*</td>
<td>q_200_djup</td>
</tr>
<tr>
<td>Vattenhastighet (m/s) för 200-årsflödet*</td>
<td>q_200_hastigh</td>
</tr>
<tr>
<td>Vattenytans nivå (m.ö.h.) för 200-årsflödet*</td>
<td>q_200_moh</td>
</tr>
<tr>
<td>Vattendjup (m) för bhf-flödet</td>
<td>q_bhf_djup</td>
</tr>
<tr>
<td>Vattenhastighet (m/s) för bhf-flödet</td>
<td>q_bhf_hastigh</td>
</tr>
<tr>
<td>Vattenytans nivå (m.ö.h.) för bhf-flödet</td>
<td>q_bhf_moh</td>
</tr>
</tbody>
</table>

*Klimatanpassat flöde för slutet av seklet.
"T_sektion_2D" innehåller resultat från MIKE 11-delen av MIKE FLOOD. Hastigheten i varje tvärsektion eller "punkt" är liksom för filen "T_sektion_1D" ett medelvärde över sektionen, men i detta fall över en kortare sektion som täcker å-/älvfåran och en bit av slänten på vardera sidan. Det finns i regel fler punkter i denna fil jämfört med "T_sektion_1D", p.g.a. att MIKE 11-delen av MIKE FLOOD ofta kräver tätare sektionsindelning än i den översiktliga MIKE 11-modellen.

ArcGIS format:

<table>
<thead>
<tr>
<th>Linjesikt</th>
<th>Filnamn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvärsektioner inom den detaljerade översvämningskarteringen</td>
<td>T_sektion_2D.shp</td>
</tr>
</tbody>
</table>

Tvärsektionsfilen **T_sektion_2D** innehåller följande information per sektion:

<table>
<thead>
<tr>
<th>Attribut</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Unikt ID för varje tvärsektion</td>
</tr>
<tr>
<td>Vattendrag</td>
<td>Namn på huvudråra</td>
</tr>
<tr>
<td>Biflode</td>
<td>Namn på biflode</td>
</tr>
<tr>
<td>Avst</td>
<td>Avstånd längs vattendraget med startvärde = noll vid källan (m)</td>
</tr>
<tr>
<td>Bredd</td>
<td>Tvärsektionens bredd (m)</td>
</tr>
<tr>
<td>50_Z</td>
<td>50-årsflödets höjdvärde i RH 2000 (m.ö.h.)</td>
</tr>
<tr>
<td>100_Z</td>
<td>100-årsflödets höjdvärde i RH 2000 (m.ö.h.)*</td>
</tr>
<tr>
<td>200_Z</td>
<td>200-årsflödets höjdvärde i RH 2000 (m.ö.h.)*</td>
</tr>
<tr>
<td>BHF_Z</td>
<td>Höjdvärdet för beräknat högsta flöde i RH 2000 (m.ö.h.)</td>
</tr>
<tr>
<td>50_D</td>
<td>50-årsflödets vattendjup (m)</td>
</tr>
<tr>
<td>100_D</td>
<td>100-årsflödets vattendjup (m)*</td>
</tr>
<tr>
<td>200_D</td>
<td>200-årsflödets vattendjup (m)*</td>
</tr>
<tr>
<td>BHF_D</td>
<td>Vattendjupet för beräknat högsta flöde (m)</td>
</tr>
<tr>
<td>50_V</td>
<td>50-årsflödets hastighet, sektionsmedelvärde (m/s)</td>
</tr>
<tr>
<td>100_V</td>
<td>100-årsflödets hastighet, sektionsmedelvärde (m/s)*</td>
</tr>
<tr>
<td>200_V</td>
<td>200-årsflödets hastighet, sektionsmedelvärde (m/s)*</td>
</tr>
<tr>
<td>BHF_V</td>
<td>Hastigheten för beräknat högsta flöde, sektionsmedelvärde (m/s)</td>
</tr>
</tbody>
</table>

Klimatanpassat flöde för slutet av seklet.
Bilaga 3: Kartor med utbredningsområden för hela vattendraget, kartering med både endimensionell och tvådimensionell hydraulisk modell.
Översiktskarta Svartån-Hjälmen-Eskilstunaän

Teckenförriklarings:
- Vattenytta
- Normalvattenstånd
- 50-årsflöde
- 100-årsflöde*
- 200-årsflöde*
- Beräknad högsta flöde

Översvämningsskartering
Svartån-
Hjälmen-
Eskilstunaän

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinatssystem plan: SWEREF99 TM
 höjdräkten: RH 2000

Datum: 2013.06.04
Bilaga 3

* klimatanpassat flöde för år 2086
Teckenförklaring:
- Vattenytta, normalvattenstånd
- 50-årsflöde
- 100-årsflöde*
- 200-årsflöde*
- Beräknat högsta flöde

* klimatanpassat flöde för år 2008

Översvämningskartering

Svartån-Hjälmaren-Eskilstunaan

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinatssystem: SWEREF99 TM
Höjd: RH 2000

Datum: 2013.06.04

Bilaga 3 13/23
Översvämningskartering

Svartån-Hjalmar-Eskilstunaan

Uppdragsgivare: MSB
Konsult: DHI Sverige AB
Kiordinatssystem plan: SWEREF99 TM
Höjd: RH 2000
Datum: 2013.06.04

* Klimatanpassade flöde för år 2008
Detaljerad övervänmningskartering Örebro

Svartån-Hjälmaren-Eskilstunaän

Teckenförklaring:
- Vattenytta, normalvattenstånd
- 50-årsflöde
- 100-årsflöde*
- 200-årsflöde*
- Beräknat högsta flöde

* klimatanpassat flöde för år 2098

Översiktskarta Svartån-Hjälmaren-Eskilstunaän

Hotkarta enligt arbetet med förordningen (2009:956) om övervänmningsrisker

Karta 2/6

Bilaga 4

Datum: 2019.04.25

Konsult: DHI Sverige AB

Uppdragsgivare: MSB

Datum: 2019.04.25

Karta 2/6

Bilaga 4
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisken

Översiktskarta Svartån-Hjälmaren-Eskilstunåän

Teckenförklaring:
- Vattenyta, normalvattenstand
- 50-årsflöde
- 100-årsflöde*
- 200-årsflöde*
- Beräknat högsta flöde

* klimatanpassat flöde för år 2098

Detaljerad översvämningskartering Örebro

Svartån-Hjälmaren-Eskilstunåän

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinatssystem plan: SWEREF99 TM
höjd: RH 2000
Datum: 2019.04.25

Bilaga 4 Karta 5/6

Skala: 1:20 000
Bilaga 5: Detailjerad översvämningskartering för tätorten Örebro. Vattendjup.
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningssaker

Översiktskarta Svartån-Hjälmaren-Eskilstunaån

Teckenförklaring:
- Vattentunga, normalvattenstånd
- 0 - 0,5 m
- 0,5 - 1,0 m
- 1,0 - 1,5 m
- > 1,5 m

Vattenliv i Hjälmaren: 22.67 m

Detaljerad översvämningsskartering Örebro
Svartån-Hjälmaren-Eskilstunaån
Vattendjup 50-årsflöde

Uppdragsgivare: DHI Sverige AB
Konsult: MSB

Datum: 2019.04.25
Bilaga 5 Karta 2/6

Koordinatystem: SWEREF99 TM
Höjdpunkt: RH 2000
Översiktskarta Svartån-Hjälmaren-Eskilstunaan

Teckenförklaring:
- Vattenytta, normalvattenstånd
- 0 - 0,5 m
- 0,5 - 1,0 m
- 1,0 - 1,5 m
- > 1,5 m

Vattenivå i Hjälmaren: 22.71 m.

Vattendjup
100-årsflöde

Datum: 2019.04.25
Bilaga 5 Karta 1/6
Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaän
Vattendjup 100-årsflöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Datum: 2019.04.25

Översiktskarta Svartån-Hjälmaren-Eskilstunaän

Teckenförklaring:
- Vattenytta, normalvattenstånd
- 0 - 0,5 m
- 0,5 - 1,0 m
- 1,0 - 1,5 m
- > 1,5 m

Vattennivå i Hjälmaren: 22.71 m.

Vattendjup 100-årsflöde:

Kartan visar översvämningsrisken enligt arbetet med förordningen (2009:956) om översvämningsrisken.
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningssaker

Översiktskarta Svartån-Hjälmaren-Eskilstunaän

Teckenförklaring:
- Vattenytta, normalvattenstånd
 - 0 - 0,5 m
 - 0,5 - 1,0 m
 - 1,0 - 1,5 m
 - > 1,5 m

Vattennivå i Hjälmaren: 22.71 m.

* klimatanpassat flöde för år 2098

Detaljerad översvämningsskartering Örebro
Svartån-Hjälmaren-Eskilstunaän
Vattendjup
100-årsflöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB
Koordinatssystem plan: SWEREF99 TM
höjd: RH 2000
Datum: 2019.04.25
Bilaga 5 Karta 4/6
Höstkarta enligt arbetet med förordningen (2009:956) om översvämningssärskel

Översiktskarta Svartån-Hjälmaren-Eskilstunaåen

Teckenförklaring:
- Vattenytan, normalvattenstånd
- 0 - 0.5 m
- 0.5 - 1.0 m
- 1.0 - 1.5 m
- > 1.5 m

Vattennivå i Hjälmaren: 22.71 m.

* klimatanpassat flöde för år 2098

Detaljerad översvämningsskartering Örebro
Svartån-Hjälmaren-Eskilstunaåen
Vattendjup
100-årssvält

Uppdragsgivare: Konsult:
MSB
DHI Sverige AB

Koordinatssystem plan: SWEREF99
höjd: RH 2000

Datum: 2019.04.25
Bilaga 5
Karta 5/6
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisker.

Översiktskarta Svartån-Hjälmaren-Eskilstunaån

Teckenförklaring:
- Vattenytta, normalvattenstånd
- 0 - 0,5 m
- 0,5 - 1,0 m
- 1,0 - 1,5 m
- > 1,5 m

Vattennivå i Hjälmaren: 22.71 m

* klimatanpassat flöde för år 2098

Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaån
Vattendjup 200-årsflöde

Uppdragsgivare: Konsult: DHI Sverige AB
Koordinatssystem: SWEREF99 TM
höjd: RH 2000
Datum: 2019.04.25
Bilaga 5 Karta 2/6
Detaljerad översvämningskartering Örebro

Svartån-Hjälmaren-Eskilstunaån

Vattendjup 200-årsflöde

Vattenlivs, normalvattenstand
0 - 0,5 m
0,5 - 1,0 m
1,0 - 1,5 m
> 1,5 m

Vattenliv i Hjälmaren: 22.71 m

Teckenförklaring:

Höjden

Skala 1: 20 000

Datum: 2019.04.25

Bilaga 5 Karta 3/6

* klimatanpassat flöde för år 2098
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisker

Översiktskarta Svartåns-Hjälmaren-Eskilstunaan

Detaljerad översvämningskartering Örebro
Svartåns-Hjälmaren-Eskilstunaan
Vattendjup 200-årsflöde

Översikt: 200-årsflöde

Teckenförklaring:
- Vattenytan, normalvattenstånd
- 0 - 0.5 m
- 0.5 - 1.0 m
- 1.0 - 1.5 m
- > 1.5 m

Vattenivå i Hjälmaren: 22.71 m

* klimatanpassat flöde för år 2098

Datum: 2019.04.25

Uppdragsgivare: MSB
Konsult: DHI Sverige AB
Koordinatsystem plan: SWEREF99 TM

Skala: 1:20 000
Översiktskarta Svartän-Hjälmen-Eskilstunaån

Teckenförklaring:
- Vattenvta, normalvattenstånd
 - 0 - 0,5 m
 - 0,5 - 1,0 m
 - 1,0 - 1,5 m
 - > 1,5 m

Vattennivå i Hjälmen: 22.71 m

* Klimatanpassat flöde för år 2098

Detaljerad översvämningskartering Örebro
Svartän-Hjälmen-Eskilstunaån
Vattendjup
200-årsflöde

Uppdragsgivare: MSB
DHI Sverige AB

Koordinatstystem plan: SWEREF99 TM
höjd: RH 2000

Datum: 2019.04.25

Bilaga 5 Karta 6/6

© Byggnadskarta. Länsstyrelsen
Häkta kartat med förordningen (2009:956) om översvämningssaker

Översiktskarta Svartån-Hjälmaren-Eskilstunaån

Teckenförklaring:
- Vattenytta, normalvattenstånd
- 0 - 0,5 m
- 0,5 - 1,0 m
- 1,0 - 1,5 m
- > 1,5 m

Vattennivå i Hjälmaren: 22,9 m

Detaljerad översvämningsskartering Örebro
Svartån-Hjälmaren-Eskilstunaån
Vattendjup
Beräknat högsta flöde

Uppdragsgivare: Konsult:

MSB
DHI Sverige AB

Koordinatssystem plan: SWEREF99 TM
höjd: RH 2000

Datum: 2019.04.25

Bilaga 5 Karta 1/6
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisker

Teckenförklaring:
- Vattenytta, normalvattenstånd
 - 0 - 0,5 m
 - 0,5 - 1,0 m
 - 1,0 - 1,5 m
 - > 1,5 m

Vatteninnehåll i Hjälmaren: 22,9 m

Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaån
Vattendjup
Beräknat högsta flöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinatssystem: SWEREF99 TM
Höjdmätning: RH 2000

Datum: 2019.04.25
Bilaga 5 Karta 2/6
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisker

Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaän
Vattendjup
Beräknat högsta flöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinatssystem: SWEREF99 TM
Höjd: RH 2000

Datum: 2019.04.25

Bilaga 5
Karta 3/6

Översiktskarta Svartån-Hjälmaren-Eskilstunaän

Teckenförklaring:
- Vattenytta, normalvattenstånd
- 0 - 0,5 m
- 0,5 - 1,0 m
- 1,0 - 1,5 m
- > 1,5 m

Vattenivå i Hjälmaren: 22,9 m
Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaån
Vattendjup
Beräknat högsta flöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Datum: 2019.04.25

Bilaga 5
Karta 4/6
Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaan
Vattendjup
Beräknat högsta flöde

Översiktskarta Svartån-Hjälmaren-Eskilstunaan

Vattennivå i Hjälmaren: 22.9 m

Teckenförklaring:
- Vattenytta, normalvattenstånd
- 0 - 0.5 m
- 0.5 - 1.0 m
- 1.0 - 1.5 m
- > 1.5 m

Datum: 2019.04.25
Bilaga 5
Karta 5/6
Översiktskarta Svartå-Hjälmaren-Eskilstunaan

Teckenförklaring:
- Vattendjup, normalvattenstånd
- 0 - 0,5 m
- 0,5 - 1,0 m
- 1,0 - 1,5 m
- > 1,5 m

Vattendjup beräknat högsta flöde

Vattenstånd i Hjälmaren: 22,9 m

Detaljerad översämningskartering Örebro
Svartå-Hjälmaren-Eskilstunaan

Datum: 2019.04.25

Bilaga 5 Karta 6/6
Bilaga 6: Detaljerad översvämningskartering för tätorten Örebro. Flödehastighet.
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningarisker

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 50-årsflöde
- Vattenlyda, normalvattenstånd

Detaljerad översvämningskartering Örebro
Svartån-Hjalmaren-Eskilstunaän
Flödeskattighet
50-årsflöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinat system: SWEREF99 TM RH 2000
Datum: 2019.04.25
Bilaga 6 Karta 1/6
Detaljerad översvämningsskärning Örebro
Svartån-Hjalmaren-Eskilstunaän
Flödeskartläggning
50-årsflöde

Förslag till detaljerad översvämningsskärning
Svartån-Hjalmaren-Eskilstunaän

Hotkarta enligt arbetet med förordningen (2009:955) om översvämningsskärning

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 50-årsflöde
- Vattenytta, normalvattenstånd

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Datum: 2019.04.25

Bilaga 6 Karta 3/6
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisken

Översiktskarta Svartån-Hjälmaren-Eskilstunaän

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 50-årsflöde
- Vattenytta, normalvattenstånd

Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaän
Flödeskiftighet
50-årsflöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinat system plan: SWEREF99 TM RH 2000
Datum: 2019.04.25
Bilaga 6 Karta 5/6
Håkarta enligt arbetet med förordningen (2009:956) om översvämningsrisker

Detaljerad översvämningskartering Örebro
Svartån-Hjalmaren-Eskilstunaän
Flödeskattighet 100-årsklöde

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 100-årsklöde
- Vättenyta, normalvattenstånd

* klimatanpassat flöde för år 2098

Uppdragsgivare: Konsult:

DHI Sverige AB

Datum: 2019.04.25

Bilaga 6 Karta 1/6
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisker

Översiktskarta Svartån-Hjälmarne-Eskilstunaån

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 100-årsflöde
- Vätenyta, normalvattenstånd

Detaljerad översvämningskartering Örebro
Svartån-Hjälmarne-Eskilstunaån
Flöde under 100-årsflöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB
Koordinatssystem: SWEREF99 TM
Datum: 2019.04.25

* klimatanpassat flöde för år 2098

Bilaga 6 Karta 2/6
Detaljerad översvänningskartering Örebro
Svartan-Hjalmaren-Eskilstunaän
Flödeskakstighet
100-årssvämme

Hotkarta enligt arbetet med förordningen (2009:966) om översvänningsrisken

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 100-årssvämme
- Vättenyta, normalvattenstånd

* Klimatanpassat flöde för år 2098

Uppdragsgivare: MSB
Konsult: DHI

Koordinatstilstand: SWEREF 99 TM
Höjdstilstand: RH 2000
Datum: 2019.04.25
Bilaga 6
Karta 3/6
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisken

Översiktskarta Svartån-Hjälmaren-Eskilstunaän

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 100-årsflöde
- Vattenytta, normalvattenstånd

* klimatanpassat flöde för år 2098

Detaljerad översvämningsskartering Örebro
Svartån-Hjälmaren-Eskilstunaän
Flödeshastighet 100-årsflöde

Uppdragsgivare: Konsult:
MSB DHI Sverige AB

Datum: 2019.04.25

Bilaga 6 Karta 5/6
Hota om dem de förordningen (2009:956) om övervåmningsrisken

Teckenförklaring:
- 0.05 - 0.5 m/s
- 0.5 - 1.0 m/s
- 1.0 - 2.0 m/s
- > 2.0 m/s
- 100-årsklåde
- Vattenyta, normalvattenstånd

Detaljered övervåmningskartering Örebro
Svartå-Hjälmaren-Eskilstunaan
Flödeskastighet
100-årsklåde

* klimatanpassat flöde för år 2098

Uppdragsgivare: MSB
Konsult: DHI Sverige AB
Koordinatssystem: WGS84/UTM50N
Datum: 2019.04.25

Bilaga 6
Karta 6/6
Håkama enligt arbetet med förordningen (2009:956) om översvämningarsaker.

Översiktskarta Svartå-Hjälmaren-Eskilstunaan

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 200-årsflöde
- Vattenytta, normalvattenstånd

Detailerad översvämningskartering Örebro
Svartå-Hjälmaren-Eskilstunaän
Flödes hastighet
200-årsflöde

Uppdragsgivare: Konsult:
MSB
DHI Sverige AB

Koordinatystem plan: höjd:
SWEREF99 TM
RH 2000
Datum: 2019.04.25

* klimatanpassat flöde för år 2098
Hottkarta enligt arbetet med förordningen (2009:956) om översvämningsrisken

Översiktskarta Svartån-Hjälmaren-Eskilstunaan

Teckenförrklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 200-årsflöde
- Våttenyta, normalvattenstånd

* klimatanpassat flöde för år 2098

Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaan
Flödeshastighet 200-årsflöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinatstystem plan: SWEREF99 TM
höjd: RH 2000

Datum: 2019 04 25

Bilaga 6 Karta 2/6
Översiktskarta Svartå-Hjälmaren-Eskilstunaan

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 200-årsflöde
- Vattenytla, normalvattenstånd

Detaljerad översvämningsskartering Örebro
Svartå-Hjälmaren-Eskilstunaan
Flöde i hastighet 200-årsflöde

Konsult: DHI Sverige AB
Uppdragsgivare:

Datum: 2019.04.25
Bilaga 6 Karta 4/6

* klimatanpassat flöde för år 2098
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningarsaker

Översiktskarta Svartån-Hjälmaren-Eskilstunaan

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- 200-årsflöde
- Vattenyta, normalvattenstånd

Detaljerad översvämningsskartering Örebro
Svartån-Hjälmaren-Eskilstunaan
Flödesshastighet 200-årsflöde

Uppdragsgivare: Konsult:
MSB
DHI Sverige AB

Koordinatssystem plan: höjd:
SWEREF99 TM
RH 2000

Datum: 2019.04.25

Bilaga 6 Karta 5/6

* klimatanpassat flöde för år 2098
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningarisker

Översiktskarta Svartå-Hjälmaren-Eskilstunaän

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- Beräknat högsta flöde
- Vattenyta, normalvattenstånd

Detaljerad översvämningskartering Örebro
Svartå-Hjälmaren-Eskilstunaän
Flödestighet
Beräknat högsta flöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Datum: 2019.04.25

Bilaga 6 Karta 1/6
Detaljerad översvämningskartering Örebro
Svartån-Hjalmaren-Eskilstunaän
Flödeshastighet
Beräknat högsta flöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinatystem plan: SWEREF99 TM
höjd: RH 2000

Datum: 2019.04.25
Bilaga 6 Karta 3/6
Hotkarta enligt arbetet med förordningen (2009:956) om översvämningsrisken

Översiktskarta Svartå-Hjälmaren-Eskilstunaän

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- Beräknat högsta flöde
- Vattenytta, normalvattenstånd

Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaän
Flödeshastighet
Beräknat högsta flöde

Uppdragsgivare: MSB
Konsult: DHI Sverige AB

Koordinatssystem plan: SWEREF99 TM
höjd: RH 2000

Datum: 2019.04.25

Bilaga 6 Karta 4/6
Detaljerad översvämningkartering Örebro
Svartå-Hjälmaren-Eskilstunaän
Flödestighet
Beräknat högsta flöde

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- Beräknat högsta flöde
- Vattenytta, normalvattenstånd

Uppdragsgivare: Konsult:
DHI Sverige AB
KOORDINATSYSTEM PLAN: SWEREF99 TM
HÖJD: RH 2000
Datum: 2019.04.25
Bilaga 6 Karta 5/6

Översiktskarta Svartå-Hjälmaren-Eskilstunaän

Skala: 1:20 000
Hötkaarta enligt arbetet med förordningen (2009:956) om översvämningsrisker

Översiktskarta Svartån-Hjälmaren-Eskilstunaån

Teckenförklaring:
- 0,05 - 0,5 m/s
- 0,5 - 1,0 m/s
- 1,0 - 2,0 m/s
- > 2,0 m/s
- Beräknat högsta flöde
- Vätenytta, normalvattenstånd

Detaljerad översvämningskartering Örebro
Svartån-Hjälmaren-Eskilstunaån
Flödeshastighet
Beräknat högsta flöde

Uppdragsgivare: Konsult:
MSB
DHI Sverige AB

Koordinatssystem plan: SWEREF99 TM
Datum: 2019.04.25
Bilaga 6
Karta 6/6
Bilaga 7: Komplett flödestabell.

Tabellen innehåller samtliga flöden som har tagits fram i arbetet med karteringen. Observera att inga översvämningskartor har producerats för 100-årsflödet och 200-årsflödet i dagens klimat. Kolumnerna för 100-årsflöde högsta och 200-årsflöde högsta visar om dessa flöden når ett max-värde före slutet av seklet.

<table>
<thead>
<tr>
<th>Plats för beräknat flöde</th>
<th>Dagens klimat</th>
<th>Med hänsyn till klimatscenarier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50-årsflöde [m³/s]</td>
<td>100-årsflöde [m³/s]</td>
</tr>
<tr>
<td>Svartån utlopp Toften</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Svartån utlopp Teen (Hasselfors)</td>
<td>59</td>
<td>64</td>
</tr>
<tr>
<td>Svartån vid Backa övre, (f.d. station 1374)</td>
<td>75</td>
<td>82</td>
</tr>
<tr>
<td>Svartån vid Hidingebro, (f.d. station 2413)</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>Svartån vid Karlslund (station 2139), tätort Örebro</td>
<td>109</td>
<td>120</td>
</tr>
<tr>
<td>Älvtomtabäcken mynning Svartån</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Lillån mynning Svartån</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Eskilstunaån utlopp Hjälmen</td>
<td>118</td>
<td>129</td>
</tr>
<tr>
<td>Eskilstunaån vid Hyndevad</td>
<td>123</td>
<td>134</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Inlopp i Mälaren, tätort Eskilstuna</td>
<td>119</td>
<td>125</td>
</tr>
</tbody>
</table>