
 

 

 
Abstract—To meet the civilizations future needs for safe living 

and low environmental footprint, the engineers designing the 
complex systems of tomorrow will need efficient ways to model and 
optimize these systems for their intended purpose. For example, a 
civil defence shelter and its subsystem components needs to 
withstand, e.g. airblast and ground shock from decided design level 
explosion which detonates with a certain distance from the structure. 
In addition, the complex civil defence shelter needs to have 
functioning air filter systems to protect from toxic gases and provide 
clean air, clean water, heat, and electricity needs to also be available 
through shock and vibration safe fixtures and connections. Similar 
complex building systems can be found in any concentrated living or 
office area. In this paper, the authors use a multidomain modelling 
language called Modelica to model a concrete wall as a single degree 
of freedom (SDOF) system with elastoplastic properties with the 
implemented option of plastic hardening. The elastoplastic model 
was developed and implemented in the open source tool 
OpenModelica. The simulation model was tested on the case with a 
transient equivalent reflected pressure time history representing an 
airblast from 100 kg TNT detonating 15 meters from the wall. The 
concrete wall is approximately regarded as a concrete strip of 1.0 m 
width. This load represents a realistic threat on any building in a city 
like area. The OpenModelica model results were compared with an 
Excel implementation of a SDOF model with an elastic-plastic spring 
using simple fixed timestep central difference solver. The structural 
displacement results agreed very well with each other when it comes 
to plastic displacement magnitude, elastic oscillation displacement, 
and response times.  
 

Keywords—Airblast from explosives, elastoplastic spring model, 
Modelica modelling language, SDOF, structural response of concrete 
structure.  

I. INTRODUCTION 

HE Swedish Civil Contingencies Agency (MSB) are 
among all responsible for the physical protection of the 

Swedish population, e.g. civil defence shelters. This imposes 
high demands on knowledge and understanding of the effects 
of extraordinary events such as loads from explosions. To 
acquire, preserve and develop such knowledge, it is necessary 
to study both the load and the structural dynamic response in 
various amount of detail. For this purpose, since the mid-
1990s, MSB has had a long-term research plan to better 
understand and develop computational and analytical tools for 
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this purpose. So far this has resulted in four PhD theses and 
numerous reports and scientific papers, see [6]-[17], and can 
be downloaded from [22]. 

Today’s buildings have complex subsystems that need to 
co-exist: e.g. electrical, air conditioning and water systems; 
some of these system components might also need to be able 
to withstand impulse loading while mounted on the structure. 
In industries, avionics, aerospace and naval ships, especially 
designed for operating in harsh conditions and military usage, 
are examples where the technology of optimizing the uptime 
of the complete system has come far. Therefore, a unified 
object-oriented language for Systems Modeling like Modelica 
[18] is of high interest for modelling systems with different 
physical domains at the same time. 

In this paper, the SDOF model representing a concrete wall 
is implemented both Excel and Modelica with elastoplastic 
properties. The Modelica implementation has both damping 
and plastic hardening as an option. The results of the two 
implementations are also compared for a specific case study. 
Modelica is not a tool but a modelling language which can be 
used to model and combine electrical, mechanical, 
thermodynamic, fluid, hydraulic, biological, magnetic, control, 
event, and real-time, systems, etc. The authors have used the 
open source tool OpenModelica [19] which includes public 
libraries of components within the mentioned multidomain. 
Here, the translational mechanical library has been extended 
with developing an elastoplastic spring damper with plastic 
hardening model component that can be used with other 
components in OpenModelica library for translational 
mechanics. The model includes equations for defining 
decomposition of elastic and plastic deformation, using 
constitutive equation for force, using yield condition, 
hardening rule, and flow rule from elastoplastic theory. All 
equations have been written in Modelica’s acasual format 
which means the model can be re-used in diverse ways in a 
system, i.e. the input and output is not fixed only the equations 
are formulated in the model. 

The paper is organized in the following sections: section II 
describes how the SDOF is numerically solved when 
implemented in Excel. Section III describes how the 
elastoplastic spring damper model was implemented in the 
mechanical 1-D translational library. Section IV discusses 
how to derive SDOF parameters, such as mass, elastic 
stiffness, and plasticity from a physical concrete wall. In 
section V, the case study is shortly described including the 
explosion load. In Section VI, the simulated displacement 
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results from excel implementation of SDOF is compared with 
OpenModelica. In Section VII, the paper is concluded and 
discussed.  

II. SDOF SYSTEM 

When studying dynamically loaded structures, it is often 
convenient to use a simple calculation model to capture the 
essential response obtained. A SDOF system, consisting of the 
mass, structural properties and acting load, is the simplest way 
to do so. Below the basic information of the build-up of such a 
system, and how it can be used, is briefly described. More 
detailed information can be found in [2] and [12].  

For a SDOF system, the basic dynamic equation can be 
expressed as  

 

 mu cu ku F t                                (9) 

 
where m, c, k and F corresponds to the mass, damping, 
stiffness and acting load, and ü, u̇ and u are the acceleration, 
velocity and displacement. For a system subjected to an 
impulse load, the damping usually has a small effect and here 
it has been conservatively omitted, resulting in a more 
simplified system as shown in Fig. 1.  

 
 

F(t) 

R(u) 

m u 

u
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utot = uel + upl k 

stiffness k at 
unloading 

t

F 

t1 
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I1 

   R u k u u 

 

Fig. 1 Simplified SDOF system used with schematic illustration of 
load relation F(t) and elastoplastic structural response R(u) 

 
Depending on the properties used for the load and stiffness, 

it is possible to analytically solve the displacement u for a 
given case. However, considering the possibility of a 
nonlinear structural response R(u) = k(u)ꞏu and complex load 
properties F(t), it is often convenient to use a numerical 
solution to determine the resulting displacement u(t). There 
are several different solution methods available for this, but 
here the Central Difference Method (CDM) is used, see e.g. 
[1] or [8].  

CDM is a so called explicit solution method, meaning that 
the solution of the displacement at time t+t, here denoted as 

utt  , is calculated based solely on equilibrium at time t. 
Accordingly, all information needed to proceed the solution at 

time t+t is already known and there is no need of any 
iterations to find a solution in case of a nonlinear response 
R(u).  

Using CDM, and neglecting the effect of damping, the 
displacement at time t+t can be determined as  

 

2 1
2 2

2 t t
t t t t t t t tm m

u t m F k u u
t t

      
             

         (2) 

 
where Δt is the time step used and index t and t-Δt indicate 
information at time t and time t-Δt, respectively. Further, a 
start condition for the displacement at time -Δt need to be 
used; this is expressed as:  
 

u
t

utuut  0
2

00

2


                           (3) 

 
The expression for the displacement in (2) can easily be 

programmed in e.g. Excel (used here) or MATLAB and a 
numerical solution u(t) can be determined. Based on this, the 
corresponding velocity and acceleration can be determined as 
 

 uu
t

u ttttt  



2

1                             (4) 

 

 uuu
t

u tttttt  


 2
1

2
                         (5) 

 
Using an explicit method can metaphorically be described 

as driving a car forward, only looking in the back mirror; i.e. 
one is not able to drive too fast or one will lose control. 
Practically, this means that there is a time step condition in 
explicit methods that needs to be fulfilled to get a stable 
solution. For CDM this means that  

 

2
2cr

m
t t

k
                                 (6) 

 
However, there may also be other reasons to choose a small 

time step, e.g. small load duration. Hence, using an explicit 
method is usually a good choice when studying the structural 
response due to an impulse load since such loads nevertheless 
demand a small time step to get an accurate solution. The 
suitable time step in each situation depends on both the load 
case and the structural dynamical properties. It usually works 
well to use a time step in the order of 1/100 of the duration of 
the impulse load; i.e.  
 

10.01
crt

t
t


   

                                 (7) 

 
Since no iterations are needed in the solution method the 

CDM is very suitable to solve nonlinear problems. The 
expression in (2) can be determined regardless of whether the 
structural response is linear or not. The trick is to let the 
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stiffness tk correspond to the secant stiffness to the solution at 
time t, see Fig. 2 (a). To model an elastoplastic response, as 
indicated in Fig. 1, it is also important to correctly take into 
account the effect of unloading, as schematically shown in 
Fig. 2 (b). If this is not considered the response will be 
nonlinear elastic; i.e. the response will just follow R(u), not 
considering any effects of unloading and reloading.  
 

u 

R 

u(tk) 

R(ti) 

k(u(ti)) 
k(u(tj)) 

u(ti) u(tj) 

k(u(tk)) 

R(tj) 

 
u

R 

k(u(tj-∆t))

u(tj-∆t)

R(u(tj-∆t)) 

k(u(t0)) 

k(u(tj)

R(u(tj)) 

u(tj) 

(a) (b) 

Fig. 2 (a) Secant stiffness used in a general case; (b) considering the 
effect of unloading when deciding the secant stiffness. Based on [8] 

 
In the calculations carried out here, the following method 

has been used to include the plastic response: 
 

 0
max max max maxmax , ,...,t t t tu u u u                   (8) 

 

 max max
max , if  and 

  
if not0

t t t t
elt el

pl

u u u u u u u
u

     


      (9) 

 

0

i t
t i

pl pl
i

u u




                                   (10) 

 
From this the corresponding internal force, R is then 

determined in each time step as  
 

 0t t t
plR k u u                                 (11) 

 
This method is rather primitive but works fine for a simple 

case like this.  

III. MODELLING OF ELASTOPLASTIC SPRING MODEL IN OPEN-
MODELICA 

The OpenModelica [19] includes many open source 
libraries such as, electrical, thermal, fluid, magnetic, media, 
and mechanics. The mechanics library is split into 1-D 
translational, rotational, and multibody system library. Here, 
1-D translational library was used to implement an 
elastoplastic 1-D spring model. This model includes plastic 
hardening and damping force which is not included in Section 
II. 

The reader will notice that the format of the equations in 
this section differs from that used in Section II; equations 
shown in this section use the Modelica language code format. 
This is intentional, to increase ease of use if implementing the 
same equations into Modelica. The following governing 

equations were implemented. The first equation is defining the 
deformation between the two connectors of 1-D spring model 
by using the relative distance definition s_rel  
 

 _   _ 0deform s rel s rel                        (12) 
 
where s_rel0 is the initial deformation. Then the deformation 
is separated into elastic and a plastic part 
 

 _   _ _1deform deform elastic deform plastic       (13) 
 

Thereafter the constitutive equation can be defined as 
 

 
   

 

( )

  *  

_ _1

der force ElasticModule

der deform der deform plastic




                     (14) 

 
where der(ꞏ) is the time derivative operator in Modelica 
language. The yield force is calculated as 

 

  * _ ;yieldforce ElasticModule s elas                 (15) 
 

The yield condition is defined as 
 

 _     *  

_ ;

f Yielding yieldforce sign force

s plastichardening

            (16) 

 
Check if the yield condition is met by using equation: 
 

 
 

_   

_ ;

f YieldCondition abs force

abs f Yielding

                (17) 

 
where f_YieldCondition < 0 means elastic phase and 
f_YieldCondition = 0 means yielding. The abs(ꞏ) is the 
operator for absolute value. 

The hardening rule can be defined by  
 

 
 

_   _ *

_ _ 1 ;

der s plastichardening h hardeningmodule

der deform plastic

     (18) 

 
A trial force is calculated as 

 

     *  ;der forcetrial der deform ElasticModule      (19) 

 
The force condition is defined as 
 

   * ;forceCondition sign force der forcetrial      (20) 

 
Now the flow rule can be defined with the following 

conditions 
 

 

   
 

_ _ 2   _  0

and 0  

1 / _ *

*   _  0 and 

 0   0   0;

 

der deform plastic if f YieldCondition

forceCondition then

ElasticModule h hardeningmodule sign force

der forcetrial else if f YieldCondition

forceCondition then else

 









     (21) 
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Update the plastic deformation derivative 
 

   
 

_ _1  _ _ 2

 * ;

der deform plastic der deform plastic

sign force

    (22) 

 
Damping is defined with the following straight forward 

equation 
 

_   * _ ;f d d v rel                             (23) 
 
where d is the damping and v_rel is the relative speed between 
the two connectors in 1-D translational spring model. 

Finally, the spring force can be calculated with: 
 

 _ ;f force f d                               (24) 
 

The following real parameters were defined: ElasticModule, 
h_hardeningmodule, d, s_rel0, and s_elas. Following were 
defined as protected real states: s_plastichardening, f_d, 
deform, deform_plastic_1, deform_plastic_2, 
f_YieldCondition, f_Yielding, yieldforce, forcetrial, force, and 
forceCondition. The continuum mechanics of plasticity for 
one dimension is for example explained in [20]. 

 

 

Fig. 3 System model within OpenModelica 1-D translational mechanical library. Including SDOF model of 1-D elastoplastic spring model. 
 

The system model in OpenModelica is shown in Fig. 3. It 
shows that the loadcase of the airblast on the wall is translated 
to a time force vector implemented into timetable1, which is 
the input for the force1 block. The force1 block is 
mechanically connected to the mass1 block, which represents 
the SDOF mass of the studied wall. The mass1 block is 
connected to the SDOF model 1-D elastoplastic spring model. 
The SDOF model is then finally connected to a fix1 block.  

All standard Ordinary Differential Equations (ODE) 
solvers, e.g. euler, rungekutta, trapezoidal, are available in 
OpenModelica. However, the powerful solver A Differential/ 
Algebraic System Solver (DASSL) is the one that makes it 
easy to solve real life physical problems which usually 
includes Differential Algebraic Equations (DAE) in addition 
to ODE and solves these systems quite easily [21]. The 
principle of DASSL solver is to approximate derivatives with 
kth order Backward Differentiation Formula (BDF). In every 
step, the DASSL solver chooses the k value and time step t 
based on the behavior of the solution, see [21] for details.   

IV. TRANSFORMING A STRUCTURE INTO A SDOF SYSTEM 

To use a SDOF system to describe the response of a real 
structure, the properties of the latter must first be transformed. 
This can be done using so called transformation factors, 
relating the property in the SDOF system to that of the 
structure. This can be done by setting  

 

m bm m                                   (25) 

k bk k                                      (26) 

 

F bF F                                       (27) 

 
where index b indicates the property of the structure and κm, κk 
and kF represent the transformations factor for the mass, 
stiffness and acting load. Implementing these into (1) and 
making use of κk = kF [2] the basic dynamic equation for a 
structure can be expressed as  
 

 mF b b bm u k u F t                              (28) 

 
where 

m
mF

F




                                    (29) 

 
Consequently, the SDOF system used for an arbitrary 

structure can be defined based on its real stiffness kb and 
acting load Fb, while the mass used must be expressed as an 
effective mass m = κmFꞏmb.  

The values of the transformations factors κ are determined 
based on conservation of kinetic energy (κm), internal work 
(κk) and external work (kF) as described in e.g. [2] or [12]. In 
the literature, values of transformation factors for various 
basic cases are available, see e.g. [5] or [12]. The deformed 
shape of the structure is of importance and often linear elastic 
or plastic response is assumed when determining the value of 
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κ, see Fig. 4 for schematic illustration of deformed shapes 
when assuming elastic and plastic response. 

 

plastic hinge  

(a) (b) 

Fig. 4 Illustration of deformed shape in simply supported beam 
subjected to an evenly distributed load at linear elastic (a) or plastic 

(b) response 
 

A single point is chosen to represent the response of the 
structure, here denoted as the system point, and all values 
related to the structure is related to this point. In Fig. 5, 
transformation factors κ are summarized for some common 
cases of a beam subjected to an evenly distributed load. 
 

 

Fig. 5 Transformation factors κ for beams of various boundary 
conditions subjected to an evenly distributed load. The black dot 

indicates the position of the system point. Based on [12] 

V. CASE STUDY: RC WALL SUBJECTED TO EXPLOSION LOAD 

For the sake of the comparison made in this paper an 
explosion load acting on a simply supported reinforced 
concrete wall, spanning in one direction, will be used. The 
explosion load is based on the reflected pressure caused by a 
hemispherical charge of 100 kg TNT detonating 15 m from 
the wall. According to ConWep [4] this approximately 
corresponds to a peak pressure of Pr

+ = 300 kPa and an 
impulse intensity of ir

+ = 960 Pas. Approximating the P(t) 
relation to a triangular load shape the corresponding duration 
can be determined as  
 

,

2 2 960
6.4 ms

300
r

r
r

i
t

P



 

 
                      (30) 

 
The loaded wall is assumed to have geometry, boundary 

conditions and reinforcement amount according to Fig. 6 (a 
1.0 m wide strip is studied), and the load is assumed to be 
evenly distributed over its length. Material properties are 
based on Eurocode 2 [3] and is made up of concrete quality C 
30 and reinforcement of type B500C; static design material 
properties are listed in Fig. 6. To simplify, no strain rate 

effects are taken into account in the calculations. 
 

P(t) 

l = 2.7 m 
 

(a) 
 

0.20 m 

1.0 m

10 s200 B500C 0.04 m

Concrete C 30 (ρ = 2500 kg/m3)  Ec = 33 GPa 
 fcd = 25 MPa 
 Es = 200 GPa 
 fyd = 500 MPa  

(b) 

Fig. 6 Studied wall strip subjected to explosion load, (a) showing 
boundary conditions and (b) showing the cross-section 

 
The calculation of the wall’s structural response is based on 

a SDOF system, as schematically shown in Fig. 1. This means 
that the response of the wall strip is simulated using one 
degree of freedom only to describe its full response. This is 
possible for a case where the shape of the structure’s 
deformation is known (or can be assumed with realistic 
reliability) throughout its full movement. Here it is assumed 
that a plastic response will be dominant, i.e. that a plastic 
hinge forms in the middle of the span as illustrated in Fig. 4. 

The total mass of the wall can be determined as 
 

2500 1.0 0.20 2.7 1350 kgbm b h l                    (31) 

 
and using κmF = 0.667 from Fig. 5 the effective mass can be 
determined as 
 

0.667 1350 900 kgmF bm m                      (32) 

 
The stiffness of a simply supported beam subjected to an 

evenly distributed load can be determined as 
 

3

384

5

EI
k

l
                                     (33) 

 
Here, the moment of inertia is based on a cracked beam 

(state II) and can thus be determined as  
 

 
3

2

3
II

II s II

bx
I I A d x                           (34) 

 
where b is the strip width, xII is the height of the compressive 
zone, α = Es / Ec is a material stiffness factor, As is the 
reinforcement amount and d is the effective height.  

For a case of pure bending (i.e. no normal force, N = 0) the 
height of the compressive zone can be determined from  
 

sII

sII
II Abx

dAbx
x








22

 →   0
22  dx

b

A
x II

s
II

         (35) 

 

 

Evenly distributed load 

  

Deformed shape, elastic response 

m  0.504 0.406 0.483 0.257 

F  0.640 0.533 0.600 0.400 

mF  0.787 0.762 0.805 0.642 

 Deformed shape, plastic response 

m  0.333 0.333 0.333 0.333 

F  0.500 0.500 0.500 0.500 

mF  0.667 0.667 0.667 0.667 
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Here α = 6.1, As = 393 mm2, b = 1000 mm and d = 160 mm, 
resulting in xII = 25 mm, III = 4.9ꞏ107 mm4 and finally a 
cracked stiffness of k = kII = 6.3ꞏ106 N/m.  

The moment capacity is determined based on stress block 
factors and cross section force and moment equilibrium as 
schematically shown in Fig. 7.  

The height of the compressive zone is determined as 
 

500 393
25 mm

0.8 0.8 25 1000
yd s

cd

f A
x

f b


  

 
           (36) 

 
and the moment capacity as  
 

 0.4 ... 30.5 kNmrd yd sM f A d x                 (37) 

 
From this the static load capacity is determined as  

 

8 8 30.5
91 kN

2.7
Rd

Rd

M
R

l


                    (38) 

 
and the limit for elastic displacement as  
 

3
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              (36) 
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Fig. 7 Wall strip subjected to explosion load 
 

The values presented above are sometimes somewhat 
rounded off but in the numerical analyses that are presented 
below the following (exact) values have been used as input 
parameters: 
 Mass: m = 900 kg 
 Stiffness: k = 6.3ꞏ106 N/m 
 Capacity: RRd = 91 kN 

The (exact) load acting on the SDOF system, see Fig. 1, is 
determined as 
 

1 1.0 2.7 300 810 kNrF b l P                         (40) 

 

1 , 6.4 msrt t                                   (41) 

 
giving a total impulse load of 
 

1 1.0 2.7 960 2592 NsrI b l i                   (42) 

 
The time step used in the analysis are Δt = 0.064 ms. 
The dynamic response of the model due to this load is 

shown in Fig. 8, in which the maximum displacement obtained 
reaches about 48 mm. After that, the mass swings back again 

and the system is elastically unloaded. Due to plastic 
displacement, though, the total displacement never reaches 
back to zero again. Instead the mass oscillates around an 
average displacement of about  

 

48 14 34 mmpl tot elu u u                  (43) 

 

 

Fig. 8 Displacement-time relation u(t) for studied wall strip 
 

The complementing results from the analysis are shown in 
Fig. 9 and Fig. 10, where the load-time relation and load-
displacement relation, respectively, are shown. In Fig. 9, the 
load F(t) applied on the system is clear and the internal 
response R(t) is shown as a comparison. In Fig. 10, the applied 
force-displacement relation R(u) is clear while the applied 
load F(u) is shown as a comparison.  

 

 

Fig. 9 Load-time relation from numerical analysis of SDOF system 

VI. COMPARISON OF RESULTS OF SDOF IMPLEMENTATION IN 

OPENMODELICA AND EXCEL 

In this chapter two SDOF implementations are compared. 
Sections II, IV, V are explaining the Microsoft Excel 
implementation and Section III is explaining the 
OpenModelica implementation of the Case Study presented in 
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Section V. 
 

 

Fig. 10 Load-displacement relation from numerical analysis of SDOF 
system 

 
The Modelica model parameters are set as shown in Table I. 

The damping and plastic hardening is set to zero, as well as 
initial deformation. It is important to notice that the Modelica 
implementation uses the s_elas as input parameter and not the 
force capacity RRd. To avoid numerical difference in the 
solution the complete division between structures force 
capacity and elastic stiffness should be used as input, see 
Table I. In the system model the mass of SDOF was set to 900 
kg and loadForce time table was set to [0, 0; 0.000064, 
810000.0; 0.0064, 0; 1, 0] in [s] and [N].  

In Fig. 11, the simulation results of SDOF displacement 
from both Excel and OpenModelica are shown. The 
OpenModelica solution traces the Excel solution without any 
deviation when it comes to rise time, maximum displacement, 
plastic displacement, elastic amplitude and periodicity of the 
elastic oscillation. In Appendix – Damping, the influence of 
damping in the OpenModelica model is briefly shown. 

 
TABLE I 

USED INPUT PARAMETERS FOR SDOF MODELICA MODEL 

Name Value Unit 

D 0 Ns/m 

ElasticModule 6.3ꞏ106  N/m 

h_hardeningmodule 0 N/m 

s_elas RRd/k=0.014444 mm 

s_rel 0 mm 

 

 

Fig. 11 SDOF displacement as a function of time for Modelica and 
Excel model 

VII. CONCLUSIONS AND DISCUSSIONS 

Here it is shown how a concrete structure such as a beam or 
a wall strip, with various boundary conditions, can be 
translated into a SDOF model. In addition, how an 
elastoplastic perfectly plastic model can be used to predict the 
elastic and plastic displacement of the structure due to an 
impulse load from an air detonated explosive charge is shown. 
All MSB references are free to download.  

A SDOF model with elastoplastic material behavior was 
implemented in Excel. In OpenModelica a 1-D elastoplastic 
translational spring model, which included plastic hardening 
and damping, was implemented in the Modelica language. The 
plastic hardening and the damping were set to zero in the case 
study. The comparison between the two implementations in 
Excel and OpenModelica of SDOF’s time history of the 
displacement showed perfect agreement. The Excel 
implementation is an easy to use implementation for a SDOF 
system. However, if the complexity needs to be increased to 
become a multi-degree of freedom problem or that the load 
case is not just force applied input to the system becomes 
more cumbersome to solve in Excel. However, this is easily 
extended and modified in Modelica, where one does not have 
to pre-define how the equations of the systems are used, i.e. 
one can easily change inputs and what and number of degrees 
of freedom. In Modelica, it is also easy to include other 
physical system domains such as air condition, water, and 
electricity in the same system model. This is to be able to 
model more of the complete housing or shelter system that 
needs to manage a reasonable degree of impulsive load.  

The Modelica language provides engineers the development 
environment to design and optimize the complex systems of 
tomorrow for their intended purpose. 

APPENDIX - DAMPING 

It is recommended to not include damping in the impulse 
load simulations of structural response with a SDOF model. 
This generates conservative results and due to the nature of the 
applied load the effect of damping is usually small. However, 
if damping is to be included, it is usually given as a ratio of 
critical damping. For the SDOF system in (1), the critical 
damping is calculated by   

 

2crc k m                                 (44) 

 
For the case study described in Section V, the critical 

damping is ccr = 150599 Ns/m. The ratio of critical damping is 
defined as  

 

cr

c

c
                                     (45) 

 
Here, the OpenModelica SDOF is simulated with damping 

ratio  = 0, 0.01 and 0.02, i.e. 0%, 1% and 2% of critical 

damping, see Fig. 12. This is approximately how many 
concrete structures have as viscous damping. 

-200

-100

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50

L
oa

d 
[k

N
]

Displacement, u [mm]

F

R

World Academy of Science, Engineering and Technology
International Journal of Architectural and Environmental Engineering

 Vol:13, No:2, 2019 

52International Scholarly and Scientific Research & Innovation 13(2) 2019 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
rc

hi
te

ct
ur

al
 a

nd
 E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:1
3,

 N
o:

2,
 2

01
9 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01
00

23



 

 

 

Fig. 12 SDOF displacement in OpenModelica model with different 
damping ratios 
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