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ABSTRACT

The design approach for structsirsubmitted to explosiordiffer from the common
statically approeh and are not well documented. This master thesis compiles
simplified methods used to design reinforced concrete beams and slabs against
impulse loads and will verify the reliability of these methods.

Two simplified methods are presented here, hand edions based on energy
equations and a numerical solution method based on the equation of motion. Both
methods are based on that the structure can be reduced to a one degree of freedom
system (SDO¥fsystem). The study is performed for elastic, plastic dast@plastic
material response and is compared to results from the FE sofdkdiNA (2009),

which is here assumed to correspond to a real structural response.

A comparison of the generated results concludes that the reliability for the SDOF
analyses, assning elastic response, is good for both beams and slabs. A divergence is
found for the handalculations which increagbe longer the load is applied, but this
divergence is known and can be predetermifed.the plastic material a divergence

is found fa both the beams and slabs.eTanalysis will approach the Finhalysis

when an increasetbad durationis used, but is not aeliable methodfor impulse
loaded structuresHowever, the results are on the safe side and can befaised
preliminary designWhen assuming an elastoplasticpense for the beams theise
certainlya good agreement between SDOF &Bsanalysis but because of the large
divergence in the plastic analysis more studies are needed before it can be assumed to
be reliable. The elastotc analysis for the slabs needs to be modified to receiv
relatively acceptable resulthis modification is described in the thesis.

Key words: Reinforced concrete, slab, beam, exas impulse load dynamic,
SDOF system, equivalent static load, Himear FEM



Dimensioneringavarmerad betorgatta med avseende pa explosioner
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SAMMANFATTNING

Tillvagagangssattet vid dimensionering mot explosioner skilier sig fran den
traditionella statiska dimensioneringen och &ar daligt dokumenterad. Detta
examensarbete sammanstéller forenklade metsai®m anvands vid diensionering

av armerade betobglkar och plattor samt verifierar tillforlitigheten for dessa
metoder.

Tva forenklade metoder presenteras har, handberdkningar baserade pa
energiekvationer och en numerisk l6sningsmetod baserad p&sineasionen. Bada
metoderna antar att den utsatta konstruktionen kan reduceras till ett
enfrinetsgradsystem (SDOF). Studien &r utford for elastiskt, ghastoch
elastoplastisk materia@spons sat jamfors med resultat fran Fitogammet ADINA

(2009, somhar antas ge eresponsnotsvarande den fdn riktig konstruktion.

Jamforelse mellan utférda resultat faststéller att tillforlitligheten for SDOF analyserna
vid elastisk respons ar god for bade balkar och plattor. En avvikelse synes for
handberékningarnaom avtar desto langre lasten appliceras, men denna avvikelse ar
kand fran tidigare och kan forutbestammas. Daremot fas en avvikelse for bade balkar
och plattor nar en plastisk resgoantas. Analysen narmar sig -BRalysen desto
langre lastvaraktighet so antas men kaninte anses ha en bra tillforlitighdtr
impulsbelastade konstruktioneResultaten ar dock pa den sakra sidan och kan
anvandas som en preliminéar dimensioneriNgr en elastoplastisk respons antas for
balkarna uppnasisserligenen bra @erensstimmelse, men pa grund av avvikelsen
vid plastisk analys behovs fler studier goras for att attalande om
dimensioneringsmetodsttillforlitlighet kan goéras. Den elastoplastiska analysen for
plattor behdver modifieras for aje relativt acceptahlresultatdenna modifiering ar
beskriven i rapporten.

Nyckelord: Armerad betong, plattéhalk, explosion,impuls last, dynamik, SDOF
system, ekvivalent statisk last, olinjar FEM
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Notations

Roman upper case letters

Area

Area of reinforcement
Damping

Flexural rigidity of a plate
Modulus of elasticity

Y o u n godudus far concrete
Y o u n godudus far steel

Kinetic energy

External force
Equivalent external force
Moment of inertia
Impulse (general)
Characteristic impulse
Stiffness

Torsional stiffness
Moment

Moment capacity

Elastic moment

Ultimate moment
Pressure load

Peak pressure load
Internalresistingforce
Equivalent internal force

Maximum internal force
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Roman lower case letters

Acceleration

Length of middle yield line for slabs
Mean acceleration

Distance of concrete layer
Effective height of crossection

Yield stress (general)
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Yield stress for reinforcement
Ultimate capacity for reinforcement
Concrete compressn strength

fr, Fictitious yield stress

£, Modified fictitious yield stress

h Height of crosssection

i I mpulseintensity

k Stiffness

| Length of beam / width of slab

m Mass

m' Mass per unit length

m, Equivalent mass

s Spacing between reinforcement steel

q Distributed load

d, Equivalent statidoad

q., Equivalent static load with elastic response

a, Equivalent static load with plastic response

p Momentum

t Time

t, Total time duration of transient load

u Deformation

o Velocity, first derivative ofu with respect to time
i# Acceleration, scond derivative ofl with respect to time

Elastic deformation
Plastic deformation

Ug, Elastoplastic deformation

u, Deformationof system point

v Velocity

v Mean velocity

v, Velocity in thesystem point

w Width of crosssection/ length of slab
X Coordinate

y Coordinate

Greek lower case letters

Quota between the Yourmrygetandmanaatel us f or
Stress block factor

Modi fication factor for Youngds modul u
Modification factor for the maximal moment

Stress block factor

Deformation
Strain
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Transformation factor for the internal force
Transformation factor for the mass

Transformation factor for the mass and external load

Transformation factor for the external load
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Rotation
Plastic rotation

Density
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1 Introduction
1.1 Background

An explosion is a huge release of energy and it creates a shockwave that acts as an
impulse load on structures. In many applicasiat is of great importance to take this
accidental action in considgion when designing structuref®r example in civil
defense, military installations, tunnels and processing induBhg.methods used to
design against impulse loads are today ndt eecumented and few controls of the
reliability for these methods can be found.

This master thesis is a continuation of earlier master thesis carried out by Nystrom
(2006) andEk and Mattsson2010.

1.2 Aim

The aim of this master theses project is to fogfether information about design
approaches for impact loading on concrete structures. Since the knowledge regarding
designing with impulse loading is limited and engineers in practieeot used to

apply dynamic calculations there is a need to findo&nealculation models thaire
accurate to reality. From previous master theses caoigd2006 and 2009 by
Nystrom respectiveEk and Mattssonimpulse loaded beams @re investigated.
However,this master thesiwill take the next ste@and investigate theesponse of
slabs.

Questions that will be considered in the project:

1 What is the response of a concrete slab subjectedplase loading by means
of simple hanctalculation approaches? What is the agreement between such
simple methods anthore advancednalysesasFE-analyses? How should
such a FEanalyss bedonein order to be both easy to carry out and yield
correct results?

1 What is the difference in response of a structural member when it has a plastic
response instead of a linear elastic response?

1.3 Method

Literature studiesare carried outto get a deeper understanding on howoacrete
structurerespond when exposed tanexplosion. Thiss doneby first searching for
present handalculations on the subjeahdby studyingthe previous master theson
beams.

A simplified handcalculation modeldescribing the response of a concrete slab
subjected to an impulse loadastablished. To verify this modaFE model in the FE
softwareADINA (2009) is done There are no possibilities to perform anylrests
and the FE model is therefore considered to simulate thebedalviourof the
concrete slab.A comparisonbetween the FE model and the simplified hand
calculationsfor linear elastic and plastic responisedone separately The elastic
modelis expected to coincide webetween the different analyseshile the plastic
analysisis expected tdoe more complicatecand therefore be a main factor in this

CHALMERS, Civil and Environmental Engineering Ma st e 20838 Thesi s



thesis.A study of beamss carried outbefore advancing to slabs, this is done in order
to get a btter understandingf the behaviour for impulse loaded structures

1.4 Limitations

Because of the complex material behaviour that arises for reinforced concrete
structuresthe beam and slals here modelled as homogenous material. This means
that the stength of the reinforcement in one direction is smeared out over the entire
crosssection Also, only idealized material behaviour, i.e. linear elastic, ideal plastic
and elastoplastic, are used in the models. This is to simplify the calculatidn®
reduce theparameters that can affect the results.

The explosion studied arises from a detonation of explosives in th®iderent
phenomenon, as reflection of the shockwave and vibrations in the ground, will not be
taken into account. The impact from tihegments of the bomb will also be neglected.

1.5 Outline of the report

The report is divided intdBackground theory(Chapter2), Beams (Chapter 3),
Slabs (Chapterd) andFinal remarkgChapters).

In Chapter2, basic theory for explosion, material response, dynaptate and SDOF
system are explained to understand the rest of the report.

Chapter3 explain the behaviouand the different approaches used to control the
resistance fom beamsubjected to an impulse loadn example is @ablished and is
followed by comments to the results obtained.

Chapter4 has the same structure as Cha@tbut here, slabs are investigated. It starts
with an explanation of theehaviour and thdifferent approaches used for an impulse
loaded slabThen, twvo examples are established, one with a simply supported slab
and the other with a fully fixed slab, and it followed by comments to the results
obtained.

Chapter5 sunmarises the conclusions from the studies and give suggestions to further
studies.

CHALMERS, Civil and Envionmental Engineering Ma st e 208338 Thesi s



2 Background theory

2.1 What is an explosion?

An explosion is an exothermal reaction, i.esualderrelease of energy that creates a
shockwave. When a charge detonatasehergyis suddenly releasedhd entire
explosion process is over in a couple of microsecoiitie. release will create a
shockwave front, i.e. a fast rise in pressure, temperature and density which will move
with a supersonic speed through the dihis initial energy will decrease with
increased distance to the centre of detonation as illustrakegure?2.1.

Centre of detonation

The pressure and temperatur
in the shock front decreases
with increased distance to the
centre of detonation

Figure2.1  Shockwave with decreasing pressure and temperature outwar:
the explosion centre.

The pressure in a point whean idealized shockwavegia shockwave that is not
disturbed by any reflectiongpasses through will first have anitially positive
pressure phase and th@ negative pressure phase, ggure2.2, Johansson and
Laine (2007)

Pressuqu
/— Peak pressure
= Positive phase
Atmospheric | 2 _
pressure X /7 Negative phas
o
e
n
» Time

Figure2.2  Idealized shockwave pressure in time.

As can be seen the shockwave front caused by the detonation is instantaneously
increased from nonal atmospheric pressure tdigher pressure which can be seen as

a Awall o of compressed air-r mol ecul es movir
front is movingforward it compresses the air molecules that come in its way and as a

result ofthis a negative pressure arigeshind the shockwave fromthere it isfia lack

by

o f 0 mdecules However , t he shockwave front fibor
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bypassing areaWith time and distance from the blast the energy and shockwave
decreases. The air molecules that waoxed awayn the shockwave front will return

to the zone where the pressure is negative. Findére is equilibrium between air
molecules.

In case ofa reflected shockwave the pressure over time will not have the same
appearance as the idealized shockwave shovigure2.2. Instead, the distribution

of the pressure over time will vary depending on how theclshave is reflected
Johansson (2002Jigure2.3 showsan unreflected and reflected hit on a building.
The reflected hit is a so called normal reflection, i.e. the shockwave hits the building
perpendicular to theurface, and can be up many times larger than the unreflected
shockwave.

unreflected
impact T
Buildi
Building ‘ r UIcing
reflected
° >0 impact
Bomb
|

Figure2.3  Reflected and unreflected shockwa¥eom Johansson and Laine
(2009).

There is two main differeniegrees of explosivesalled high and low.When using
low explosives themovementof the shockwave happgnn subsoni¢ i.e. with a
velocity under speed of soundhis ignition of low explosive explosions called
deflagration In contrast to low explogés the high explosive shockwave moves in
supersonic, i.ewith avelocity over speed of sound. The ignition of a high explosive
explosion is called detonatipdohansson (2002)

2.2 Simplified shockwaveand load

In Figure2.2 the pressure variation at a point is illustratédsimplification of the
shockwave is done to easier be able to calculate the intamsitthe load it will give
rise ta This is done by assuming a linear decrease of pressure in timalsand
becauseof the relatively small peak pressure in the negative plyseeglecting the
negative phaseseeFigure2.4a. From now on this idealization of the impulse load is
to be usedHowever, anodification has beemade with a small inclination from zero
pressure to the peak pressdoe the FEanalysisdue to convergence problems in
mode| seeFigure2.4b.
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Due to limitations in performing a real test or doing a nonlinear numerical calculation
empirical expressions are used to calculate the impulse load from an expldsse.
empirical expressions from ¢e. Baker (193) can be used in order to compile
parameters likgpeak pressure and impulse intenskgr a deeper investigation and
understanding abotmow todefine animpulse load the reader is referredJwhansson

and Laing(2007)andJohansso2002).

In this maser thesis a reference bomb provided by the authpntill be used.It
consists of 125 kg high explosive TNT with a distance of 5 meter from the studied
structure.

2.3 Materials

2.3.1 Material behaviour

The material studied in this master thesisréinforcel concete. The mateal
behaviourof reinforcement and reinforced concrete is showRigure2.5.

Stress s Loe}f’ q Strain hardenin
4 Ultimate capacit Ultimate Limit 4
tate Il S
fst : (state )\ I/_ _________ 'i
foy 1 | | \D
1 i ) ! uctile
! ! Reinfrocemer ‘\
3 ! i start to yeilt \
| 1 (state I \\
‘ } } '\Concretn \\N Brittle
3 | | Strain ¢ crack:
! ! ~ (state | .
€sy €s,fst €sL Deflectior , u
L uel upl | ! Uel [ upl
(@ (b)
Figure25  Material behaviour foKa) reinforcement andb) reinforced concrete

The reinforcemenbehaviouris linear elastic until it yieldsyhich happens when the
stress reaches the yield linfiig. The stress can then increase further to the ultimate
capacityfs, because of a phenomenon calkdain hardening. Whethe ultimate
strain l, is reached the reinforcemecainnotdeform anymore and will beorn off.

The value of the total strain will depend on the plastic rotation capacity, which is
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essential forthe capacity of a concrete structuaad will be described further in
Section2.3.4

Because of the high stiffness of uncracked concrete the reinforced concrete will have
a high stiffness in the beginningalled state land only small deformations will
occur. Havever, the concreteasa low tensile capacity anghen itcraclks, state Il, it

will leawe the reinforcement to resist the tensile stresa#wen designing a reinforced
concrete structure it is assured that the reinforcement in the tensile zone can develop
its ultimate capacity state Ill, before the structure collapse. Assuming this, the
reinforced concrete will have similar materialbehaviourafter it has cracked as the
reinforcement. Note here that the loadFigure2.5 increasedor statelll while the

stress remains constantfgt This is because the structure will start to redistribute the
moment to other parts where the yield mommeaitis reached.

Depending on how the reinforced concrsteuctureis designed, i.e.amount and
location of reinforcementthe structurecan have a ductile dorittle responseThe
response that will arise depends on the plastic rotation capacity and will be presented
in Section2.3.4 A general rle is that aductile response is preferred since the
structure carthendeform moreand that crushing of concrete should occur and not a
torn off of the reinforcement

As can be seethe response may bather complex and further studies will not be
donehere. Instead, simplified models of reirdement and reinforced concrete are
established tgimplify thedifferent methods used in thisaster thesis

2.3.2 Simplified material behaviour
2.3.2.1 Reinforcement

A commonsimplification ofthe behaviourof reinforcementis to neglecthe strain
hardening. It can then be descdhasin Figure2.6, with themaximum capacity set to
theyield limit, fsy.

e

»
»

&y &u
Figure2.6  Simplified reinforcemertiehaviour.
2.3.2.2 Linear elastic
The unckracked and crackeqmhrt of the concretestate | and lljs followingHo o k e 6 s
law

s =Ee (2.1

where G is stress,E is Y o u n g 6 dus ana @isi concrete strainTo simplify
calculationshereeither a case withincrackedconcreteor with crackedconcretewill
be assumedrhe nternal resisting forcR canfor the cracked case lsalculated as

CHALMERS, Civil and Envionmental Engineering Ma st e 208338 Thesi s



R = ku (2.2)

whereu is the deflection an#d is the stiffnessseeFigure2.7.

Uncracled  greab
G ' R
L,/
k
E
0 u
@) (b)
Figure2.7  Linear dastic uncrackedcase &) material response (b) structural

response

The stiffnesk dependsov oungo6és modul us a n dlts fudceon mo me nt
will differ depending on theystem, i.e. boundary conditignshoice of materiaand

form of structure. For the crackpdrtthe moment of inertia will be lower than for the
uncrackedpart, resulting in a lower stiffnes3.he cracked case is assumed to have a
constant stiffness anithe internal resistingorce can therbe calculatedn the same

way as for thecracked case, equati(2.2) , but with a lower stiffness and henae

higher deformationseeFigure2.8.

Uncracled  greab
G ' l / R
/,,\
., Cracked K
E/ .
0 u
@) (b)
Figure2.8 Linear elastic cracked case (a) material response (b) structural

response.

2.3.2.3 ldeal plastic

Since strain hardenings neglected for the reinforcement the idealizpldstic
statelll, material behaviour for reinforced concrete wWilbe assumed to have a
consant value eqal to the yield stresseeFigure2.9. A result from this assumption
is that no deformations will occur until the stress heeched the yield stress. If a
system is subjected to a lokdhe relatiorcan be written as

u=0

uzo

F < Rm and

F 2 Rm

R=F for

R = Rm

(2.3)

for and

whereRy, is the maximum value of the internal force, i.e the resisting internal force
when the steel is yielding.

CHALMERS, Civil and Environmental Engineering Ma st e 20838 Thesi s 7



Co
» 0

>U »U
@) (b)

Figure2.9 Idealized plasticase (a) material response (b) structural response

2.3.2.4 Elastoplastic

The simplified elastoplastic material mores i mi | ar tbehaviouv,eseeii r e a |
Figure2.5, thanthe elastic and the ideal plastic materlalwill have an elastic part

equal to the cracked concrete and when the stress equgiglthstress it will enter

the plastic part, seleigure2.10. Note here hat when unloading the system the elastic
deformation will go back while thelastic deformation will remain. Siba system is
subjected to a load P the relation can be written as

R =ku, for F <R,
(2.4)
R=R, for F2R,

where Ug is the elastic part of the deformatioffhe cracked casdas been chosen
because it gives an upper limit for tledastic deformations and the model will
therefore be a fiworst case scenari oo.

¥ R
A °© A
W Up
fy R,
,”f Unloading and ,’II Unloading and
/ reloading / reloading
./ > 0 [ » U
. .
U v

(a) (b)

Figure2.10 Elastoplasticcase (a) material response (b) structural response

2.3.3 Theory of plasticity and plastic hinges

As long as the stresa the most stressed fibres in the cresstionis less than the

yield stress the crossection will have an elastic responsa n d Hookeds I
equation(2.1), will apply. For a rectangular double symmetric cresstionthe stress

and stain distribution will be symmetric ashown inFigure2.11. The elastianoment

for a rectangular crosectionis
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M, =—— (2.9)

where | is the momentof inertia which for a rectangular crossection can be
calculated as

wh?

12

(2.6)

wherew is the width andh is the height of the crosection A limiting case is when
themaximum stress equals thieeld stressFigure2.12a, themoment is then equal to

M, =—— (2.7)

I

Crosssection Strain distributione Stress distributiors

Figure2.11 Stress and straindistribution for a double symmetric crossction

If the load is increased further the crossction will enter an elastoplastic state.
Hookebds | aw wil/l only apply for the el ast
linear strain response but the stresses will be modified it doesndt exceec
limit, seeFigure2.12b. The maximum moment capacity is reached when the whole
crosssection has plasticised, as shown kxigure2.12c. It can be calculatedor a

rectangular crossectionto be

(2.8)
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o) Ma<M<M, : ___________________ i ___________

Figure2.12 Stress and straindistribution for (a) yielding starts (b) part of the
cross section is yielding (c) the whole crosssection is yielding
(ultimate moment capacity)

When the ultimate moment capacly, is reached in aectionthe deformations will
increase rapidly in the affected area. Becausgitld area is small it can be assumed
that all the deformations take place in one srdafbrmableelementcalled a plastic
hinge. If the stucture is staticallydetermined for example for a simply supported
beam, a plastic hinge will lead to a mechaniseeFigure2.13a. In other casewhen
the structure is statically indeterminafer example for a fully fixed beamr a slab
more plastic hinges are needed to form a mechamisarigure2.13b. Thenumber &
plastic hinges needed is equal to

number plastic hinges = m+1 (2.9

whereeg is the number of the statically indeterminacy for the strucflings means
that although the ultimate moment capacity is reachegna @rt of the structure
more load can be applied since the moments are distributed to other parts.

For a statically loaded structure a mechanism will lead to a collapse of the structure.
This is however not true for a dynamic loaded structHesre, the onlylimit is the
maximum internal forc&y, of the structure.
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Plastic hinge

N\ N\

Plastic hinge Plastic hinge
@) (b)

Figure2.13 A mechanism for (a) statically determinate structure (b) statically
indeterminate structure

2.3.4 Plastic rotation capacity

As mentioned above the maximum moment capacity is reached when the whole cross
sectionyields. This ishowever an idealized state where the strains are infinite large
and the real maximum moment capacitgty be reached before. The limit depends on
how much thedeformableelementcan deform befora plastic hinge is created. The
deformations that stadfter yield limit is reachedrecalled plastic deformations and

will give rise to plastic rotations in theegion The plastic rotation capacity ia
measure of the maximum plastic rotation, i.e. the plastic rotation when a plastic hinge
is formed. This meanthat although the yield stress is reached the deformations can
increase further, sdegure2.14.

u u

Ug| Upi

Utot

(@) (b)

Figure2.14 Plastic capacity for (a) deformation (b) rotation

In Eurocode2 CEN (2004)the maximumallowed plastic rotation is presented in a
diagram, shown ifrigure2.15.
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Figure2.15 Diagram from Eurocode 2 CEN (2004jescribingmaximum allowed
plastic rotation

Here, the plastic rotation capacity is based on the gualitthe concrete, the
reinforcement class and the ratio between the height of the compressed zone and the
effective height.

2.4 Basic dynamics
2.4.1 Introduction

An explosion will give rise to a high pressure under a short amaofutitne. This
pressuravill be mud larger than thetaticpressure the structurensrmallydesigned

for andstill the structurewill not always collapseThe reason for this is that the static
pressure is applied on the structure for infinite time while the explosion only has a
short duation and hence, can have a larger maximum pres3his. means that
another way ofresolving the problenhasto be used One way to do this is by
considering the energgpplied by the explosion and the energy the structure can
absorb before it collapseln this chapter basic dynamics needed to understand this
way of designing will be presented.

2.4.2 Velocity and acceleration

The velocity is defined as theovement over time. If particle moves fronu, to u;
over the timej to t; the mean velocity is

(2.10)

By letting the time differencg-ty go towardszero the difference in siance will also
go towards zero and the velocity of the particle will approach a value defined as the
velocity attimet. The equation is
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u,-u du
v(t)=v=Ilm =—2%=—

=
T T (2.11)

The acceleration is defined as the difference in velocity over time, i.e. if the velocity
increases fromyg to v; over the timd, to t; the mean accelerati is

a=

° (2.12)

Analogous with the velocity the acceleration will reach a value at time t when the time
difference goes toward zero. The equation is

a(t) =a=1Im

= W
o T (2.13)

2.4.3 Force and pressure
The force is according to Newtonds second |

F = ma (2149

wherem s the masanda the accelerationf the body respectively
The pressur® is defined as the force acting on an area, i.e.

P=— (2.15

whereF is the force acting on the aréa

2.4.4 Momentum, impulse and impulse intensity
The momentunp for a body with the mass andvelocityv is defined as

p=mv (2.16)

If the body is moving with the velocity and is subjected to a foréeunder the time
to-t1, seeFigure2.16, thenew momentunecan be calculated as

mv, = mv, + §{F (t)dt (2.17)

t

wherev; is the new velocity of the body and the integral to the right is defined as the
impulsel transferred to the body, i.e.

4

I = fjF (t)dt (2.18)

to
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Figure2.16 Difference in momentum when a body is subjecten txternal force
By inserting equatiof2.13) and(2.14) into (2.18) theimpulse can beedefinedas

| = r%F (t)dt = |;]rna(t)dt = m;“]a(t)dt =mv (2.19

to to to

If the body instead is subjected to a pres§uuader the tirme t,-t; the new momentum
is calculated as

mv, = mv, + AﬁP(t)dt (2_20)

to

where the integral is defined as the impulse intemsgmnsferred to the body, i.e.

i = fP()dt (2.21)

t

By looking at Figure2.4 againthe impulse intensity can be illustrated as the area
under theforcetime relation From Figure2.17 and ty combiningequations(2.15),
(2.18) and(2.21) it can be seen that

| = Ai (2.22

P 4 P 4

1 1

v
v

(a) b (b) :

Figure2.17 Impulse intensityor an idealized shockwave

2.4.5 Work
2.4.5.1 External
The kinetic energ¥ for a body with the mass m and velooitis defined as

2
£ = (2.23)
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By inserting the equatio2.19) into (2.23) the external workW, i.e. thekinetic
energyEy, for a body with the mass) and subjected to an impulse loaaan be
expressed as

W._ = Ek = — (2.24)

However, thisequation is only correct when the inigei isinfinitely short.In other

cases a resistance against transferring the kinetic energy into the strogstiree
consideredThis resistance depends on the stiffness of the structure and will increase
with time. By introducing a so called characterized impulstat has an infinite high
pressure and infinite short duratieeeFigure2.18, theequation(2.24) can bestated

in a more correct way as

W, =E _ L (2.25

» Time, t

dt

Figure2.18 Characterized impulse

This means that when comparing the external work for an impulse load with longer
durationthe longer impulse will result in a lower external workthe structureStudy

for example the impulse for tha&lealized shockwave shown irFigure2.4.The
external work forthis idealized shockwave will be lower than farcharacterized
impulse load with the same total impulseeFigure2.19.
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/ Wy, - characterized impulse
&

\ =I5 but WP Wo)

W, - for idealized shockwave

» Time, t

dt

Figure2.19 Different external work on the structure for the same total impulse but
with different durations

2.4.5.2 Internal
The internal work of a body is defined as

Uy

W, = FR(u) (2.26)

Uo

whereu is the deformation an®&(u) is the internal resisting force of thestructure.

Note here that this resisting force is not the same as the resistance against transferring
the kinetc energy into the structure mentionedSaction2.4.5.1 The internal work

can be illustrated by the area under the structural response curve described in
Section2.3.2 see Figure2.20. As can be seen the internal wovkill develop
differently in time depending on whataterial is usedout the final internal work will

always be the same

F F F

(@) (b) (c)

Figure2.20 The internal work for the materials (a) elastic (b) plastic
(c) elastoplastic

By combining equatiof2.2) and(2.26) the elastic internal work can be stated as
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_ _ o kud
Wi = nR(ue|) - nkuel - 5
0 0

(2.27)

By combining equatio2.3) and(2.24) the ideal plastic work can be stated as

Up 0 Uy
W, =fRU,)=fpP+ fR=0+Ru, =Ru
0

0 0

(2.29)

pl

By combining equatio2.4) and(2.24) the elastoplastic work can be stated as

Ugot Uey Utot 2

ku
Wi.ep = ﬁR(upl) = ﬁkuel + ﬁR = e 4 Rupl (229)
0 0

2

Uel

2.4.5.3 Equilibrium

For a body to b&n energyequilibriumthe external work must be equal to the internal
work, i.e.

W, =w (2.30)

By combining equatior{2.25), (2.27) and (2.30) the elastic deformations that will
arise in the structure can be calculated to

uy == (2.31)

where¥ is the angular frequencyn the same way the plastic deformations can be
calculated by combing equation2.25), (2.28) and(2.30) to

I 2
u, = £ 2.32
" 2mR_ (2.32)

and the elastoplastic deformations can be calculated as

u_=u

ep ep.el

+ uep.pl (233)

whereuep.e1anduep pi iS the elastic respectiveplasticparts of the deformationdlote
here thatfor the elastoplastic case the elastic part will add additional resistance and
therefore less plastideformation is needed. However, since the elgstikt has a

linear response and is limited by the ultimate internal resistance, the deformation will
be twice as largeompared with the plastic contributioseeFigure2.21.
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Figure2.21 Difference in required deformation for same internal energy.

This will result in a larger total deformation for the beam than if an idkatip
material was used. The maximum elastic deformatambecalculated as

u_ =2 (2.34)

ep.el
k

and the plastic reductions witien beaccording tdrigure2.21.

Du, = ”%' (2.35)

This will give the plastic deformation

u =u, - Du

' (2.36)

ep.pl pl

2.4.6 Equation of motion

StudyFigure2.22a, the rigid massn is attached to a spring with the internal foRe
andthe force F(t) anddampingC acting on the system. If the system is vibrating with
help of an externaforce the motion is referred to a®rced vibration Since an
impulse loadwill hit the structurevhen it s exposed to explasns this will be the
case in the beginning. But the impulse Id&s$ a short duratioand the forces after
only a short timeequalto zero and the continued motion can then be described as
dampedfree vibration Thedamping on the system will have a positive effect since it
reduces the displacement for the system and hence, the work done by the Bystem.
to the short time duration, the effect of damping is, on the safe side, often edglect
when considering explosions.h@ system willthen only consist of a rigid mass
attached to a springith a forceF(t) acting on if seeFigure2.22b. In this master
thesisthe focus will lie on the time when thenpulse load is acting and shortjter
sowhenever thequation of motion is mentioned it is this undamfmdedvibration
system shown inFigure2.22b, that is consideredt should be kept in mind, thought,
that when the load duration is short and when the impodsE has expirgdhe force

F(t) will be equalto zero and the system will act as an undamped free vibration
system
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Figure2.22 Mechanicalforcedvibration systena) damped byndamped

The impulse loadavill result ina deformatioru for the masss shown irFigure2.23a.
The bodywill then start to oscillate around its equilibriumipio Since the system is
undamped the same deformation weidcurin the opposite directioand in the same
direction agairfor infinity or until the oscillation is interruptedhis means that the
same work will be done in both directions and dlsat the gravitation must be
neglected since it will accelerate in one direction amardein the other directioBy
isolating the rigid bodyn the Figure2.23b can be establisheéor the body to be in
equilibrium thesum ofall forcesmustequalzero.With this condition the equation of
motion for an undamped forced vibration carstaedas

mé#++ R = F(t) (2.37)

Combining equation(2.37) with (2.2) a linear elastic equation of motion can be
expressed as

mé#+ Ku = F(t) (2.39)
R
R R,>R R,=R T
2 m 3 2 }mﬁ#
A
m u l F(t)
A —~-
u m
@ (b)

Figure2.23 a) Rgid body undergoing undamped forced vibration b) forces acting
on therigid body.
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2.5 Plate theory

2.5.1 Introduction

A plate is a flat body with a relatively thin thickness compared to its length and width.
The bending properties of the plate depend stronglysothickness compared to the

size of theflat area According to Timoshenko (195%e plates are divided into three
different sub categories: thin plates with small deformations, thin plates with large
deformations and thick plates. The slabs studiedhis mnaster thesis will have a
relatively small thickness compared to its other dimensions and the deformations will
be relatively small. Therefore, the slab can be assumed to have the same behaviour as
a thin plate with small deformations. In this chagted further on, only theory of thin

plates with small deformations will be presented. Howeverstiheturalbehaviour of

plates is rather complex and will in some extent be simplified.

2.5.2 Elastic behaviour

If the plate is studied from the sidewill have the sme deformation shape as a beam.

By combining the two beams in different directions the final shape for the elastic plate
is established. To easier be able to calculate the deformations it is assumed that the
plate has a sinusoidahape Timoshenko(1959) The deformations along the plate

can then be expressed as

u(x,y) =sin(px/w)Gin(py /1) Qu__ (2.39
where w is the width,x is the wdth coordinate,l is the length,y is the length

coordinateand umax is the maximundeformation, i.e. the deformation in the middle
of the plateseeFigure2.24.

Figure2.24 Elastic deformation for a plate

The maximumdeformation for a simply supported plate withiformly distributed
loadis, according to Timoshenko (1959), eqtal
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u
" pGD mazl 21 & 12 2 g (2.40)

where q is a uniformly distributed loadn and n are anodd seresasm=1, 3, 5¢é
n=1, 3 ,arwP is the flexural rigidity of a plate defined as

El

D =
1- u?

(2.41)

where3 i soistoriisgatid’and is the moment of inertia per meter

2.5.3 Plastic behaviour
2.5.3.1 Method

The plastidbehaviourof the plate is here described according to the yield line method

in Hultin (1983) This method is a so called upper bound approach, mganih hat it 6s
an upper limit for the capacity of the plate and hence, an upper limit for the
deformations.

2.5.3.2 Yield line figure

The plasticbehaviourwill start when the yield limit is reached for the most stressed
fiber in the plate and a hinge is formed. Fomrectangular plate with uniformly
distributed load this will happem the middle. The hinge will then spread along a
yield line and eventuallypranch offto the corners. When the hinge lines reaches the
cornersa mechanism is formednd the full capacityof the plate is reached, see
Figure2.25.

T
¥

(@) (b) (€)

Figure2.25 a) A hinge is formed in the middle b) The hinge is spreading along the
yield line 9 The yield line branches off to the corners and a
mechanism is formed.

The assumed yield line figure must be kinematic possible, meaning that the different
plate portions divided by the yield lines must fit together when the plate deflects. This
criterionis fulfilled as long as the yield line between two slab portions or the yield
lines extension passes throutfte intesection of the rotation axes for the two slab
parts. The principle is illustrated féigure2.25c. The yield line in the corner between
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slab portions 1 and 2 will pass through the isgetiors of the rotation axes-A and
B-B, seeFigure2.26a. The samecan be said for all yield lines in the corners.
Howe\er, the yield line in the rddle is an exception. Since & parallel to its rotation
axes, AA and DD, either the rotation axes or the yield line will intersect. One way to
bypass this is by extending the axes and line to eternity. This will creatgtiaal o
illusion that the axes and line will intersect, egure2.26b.

(a) (b)

Figure2.26 Criterion for the yield line metho@a) The corneryield lines passes
through the intesectionof the affected rotation axegb) By letting the
axes and line extend to eternity an optical illusion will arise that the
axes intersect the line.

A phenomenon that can arise in the plate corners is tlalleal cornerdemerging

What happens then is that the corners of the plate rises above their support, resulting
in a split of the corner yield line into two lineseeFigure2.27. However according

to Hultin (1983) this phenomenon haa very small impact on four sided plates with
uniformly distributed loadandis thereforehereneglected

Yield line
@

(b)

I=F - === -

Figure2.27 (a) Yield line figureaccording to yieldihe theory(b) yield line figure
with corner demerging
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2.5.3.3 Maximum load capacity

When a yield line figurdas been establishélode maximum capacitipr the platecan
be calculateavith either equilibrium equations orithr the virtual work principle.

The intenal virtual work for the slab is
Wi = a M iliqi (2-42)
where M; is the moment|; the length of the affected yield lirend d; is theangel

between the undeformed and deformed shaperigeee2.28. Since the deformations
are small the angel can be calculaied

0.=7 (243
X
q, = g (2.44)
2 y .
wherel is the deformation for the plate.
Yield line

Figure2.28 Yield line figure for a simply supported enay plate.
The external virtual work done by the load is

W, = a. indTP.i (2'45)

wherelrp is the deformation in the centre of gravity for each part.

By setting the internal work equal to the external wolk £ W) the maximum
uniformly distributed load on the plate can be calculated to

_ é. miliqi

2.46
a Ad, (249

P.
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2.6 SDOF system

When considering a beam oiskbit can beof interest to redeethe entire structure
to a singledegree of freedom system (SDQRp. describing théehaviourof a
sysem in one pointThis will simplify the structureand make it easier to calculate its
responseln Figure2.29 an illustrationof the transformatiowonceptfor botha beam
andaslab is presented.

@

| Loty

Fe(t)

Figure2.29 Conceptof transforminga beam anda slab to a SDOF system.

The SDOFsystem has one dimension and is therefore prevented from movements in
otherundescribed directiong:or amulti degee of freedom system (MDOF), as the
beam and slab, there are thdimensions resulting i8 directionswhere the body is

able to move

It is possibleto reduce a MDO#system to a SDOBystem which dscribe the
response of the structure in one point chlilbe system point, sdegure2.30. It is
also possible to choose position of the system point anywbatst is often of
interestto place this point whemmaximum dérmationoccurs
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(a) Beam \

Systempoint

(b) Slab
Figure2.30 System point in the middle @f) a simply supported bea¢h) a simply
supported slab.

In order toreduce theébeam or the slatb a SDOFsystem a deflection shape of the
structure has to bessimed Here, the assumed deflection shape for linear elastic case
is chosen from elementary casas the first eigetmode and for the plastic case a
mechanism formsi used for the deflection shapee §&gure2.31.

ww

(a) Linear dastic casefor beam (b) Plasticcasefor beam

(@) Linear elastic case for slab b) Plastic caséor slab

Figure2.31 Assumed mode shapes for elastic and plastic material.

Now when the deformatioshapes are establishéide equation of motiorcan be
calculatedas

mét+ R = F (t) (2.47)
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wherem is the total mass for the untransformed hailys the acceleratiorR is the
internal force and~(t) is the eternal force acting on the untransformed hodtlye
untransformedvIDOF body has adifferent physicalbehaviourthan a SDOFsystem
whichis assumed to hawerigid body.To solve this problemso called transformation
factorsare added toeach quantityso the equivalentquantities in the SDOBystem
equal the quantities ithe untransformed d&dy. The definition of the transformation
factorsfor each quantitys

k= (2.48)
m
R
kK, =— .
== (2.49)
F_(t
k=2 (2.50)

F (1)

where the index is for the equivalent body (SDOF) amgthout an indexis for the
untransformed bodylnserting equation$2.48) to (2.50) into (2.47) the equation of
motion for a transformed body, i.e. a SD@Jkstem as the beam or slab, can be
written as

k _mé+ k R = k_F(t) (2.51)

By dividing alltermswith ar the equation can be rewritten as

k—””mé#+k—KR—F(t) 252
k k (' )

F F

According to Biggs (1964) theslation betweeByk andeg is
« =k, (2.53)
andtogether with anew transformation factor deéd as

Ko = (2.54)
the equation of motion can finglbe expressed as

k.. mét R = F(t) (2.55)
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3 Beams

3.1 Introduction

A beam can be seen as@e wayslab, i.e. a slab with supports and reinforcement in
one directionTherefore, a an introduction to slabs, beams amelir behaviourunder
impulse loadis briefly studied. From previous master thebig Nystrom (2006)
simplified models and-E-analysisto describe the response of the beam have been
established and a short summerpresented in this chapter. Special attention is given
to the plastic and elastoplastic cgsghich has given a large divergse between the
FE-analysesequation of mabn andhand calculationgor the previous master thesis
Ek and Mattsson2010.

3.2 Response of beasisubjected to impulse load

The response of a beam subjected torgformly distributedmpulse loads illustrated

in Figure3.1. The impulse load has triangular shap@as shown inFigure2.4b.
Figure3.1a shows the response when the impulse load is zero and the beam is
unloaded Figure3.1b shows theresponse of the beam subjected to the impulse load
when the load has reached its peald the bam has just started to deforinmay be
noted here that the maximum deformation is not in the centre.ig tiscause the
wave velocity is about 3500 m/s in longitudinal direction for concrete and the middle
of the beam is not yet aware of testenceof any supports. One way to describe this
phenomenon is to look at it as transport of information. Whenrtipulse hit the
beam, information of the load will spread through the beam with the velocity of 3500
m/s. The information will travel through the beam and when reaching the two
supports it will turn back with this information to the rest of the beam agam,
Figure3.2.

Q;ntl Paoint 2 Point 3
O o

'S
i

M

(a] (b}

N

<)

Figure3.1  Response of beam at different time.

CHALMERS, Civil and Environmental Engineering Ma st e 20838 Thesi s 27



w

(0.00'°... .: .0.. .."Oo.o]>
(O.oooo-ooi°°... ...."......00.)

A O

Figure3.2  Transportationof load througha beam.

This means that if the beam is 2.7 m long and the impulsecigracteristic impulse
with an infinite small duration, seeFigure2.18, it will take about 0.39 ms
((2.7/2)/13500 for the suports to be aware of the entire load. After this the
information will spread through the beam again making it deform accordingly to the
boundary condition between the beam and the support. Sé&jgure3.1c the
information has gone further through the beam buirtftgmation about théull load

has still not reached the middle of the beam. Finally, in the last pitheentire
impulsehas reached the middle of the beam resulting in the maximum deformation
which has the same appearance as a sibtibadedbeam This happens afte3.78

ms when the information has travelled another 1.35 m (2.W2)an further be
pointed out here thahe maximum defrmaion happens after thepulse has ended.

The debrmaion in different points along the beam can be seeffrigure3.3 where

point 1- 3 are located as shown kiigure3.1. Figure3.3 is illustrative in order to get

a better understanding on how the impulse loaded beam behaves. It is a clear
difference inbehaviourfrom a statially loaded beam to an impulse loaded beam. The
deformationfor each point isimilarto each other in the initignart, seeFigure 3.4, of

the impulseand will then increase almost sinusoidal

40

30

”~ | ] P oint 3

25 L ’ 7/ L 2
—Point2
20 : -
P

Deformation

15 - ——Point1

0 5 10 15 20 25 30

Time [ms]

Figure3.3  Defamation in different points along thienpulse loadedbeam.
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Figure3.4  Deformation in different points along the beam imearly stage.

This is however not the case for a statically loaded bé&&hen applying a load
gradually and slowly, i.e. statically, thefdamaton can often be simplified withthe
form of a half sinus wave from the beginning amatil the full load is applied.
However, for the static loaded beam the curvaturdsgare3.3 will never coincide
with each otheras for the impulse loaded beaihe difference is clearly shown in
Figure3.5.
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Figure3.5  Deformation in different points along the static loaded beam.

As mentionedn Section2.4.6 a dynamic loadwill make the mass, here thmam
oscillate around its equilibrium point. If no damping is assumed theardaftmn of
the beam will be the same in both vertical directi@mnsequentlywhen asigning a
beam subjected to a dynamic load, in contrastdticcase, the dynamic case need to
be designed for maximum displacemé both vertical directions.

In an early stage there is a significant deformatiear the supports compared to the
deformation in the midsection of the structure, seEigure3.6. These deformations
will give rise to large shear stresses whiesults ina large risk of crackingdowever,
althoughthis problenrequires more investagionit is outside the limits of this master
thesisandwill therefore nobefurther investigated.
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Zoneswith risk of cracking

Figure3.6  Zone where there is a high risk of cracking in the early stegem
Nystrom(2006).

3.3 Equation of motion

3.3.1 Introduction

As mentioned irBection2.4it is the energy that can be absorbed by the structure that
is of main interestThis can becalculatedoy studying gpoint on the beam where the
maximumdeformations occur.e. in the middleof the beamHenceforth thigoint,
denoted the system point, chaused to transform the beamdaundamped SDOF
systemAccording toSection2.6the equation of motion is

k. . méH R = F (1) (3.1)

wherem, R and Ht) are properties of the untransformed beam apg is the
transformation factor thas based on a division between the transformation faepr
andar as

Ko = (3.2)

3.3.2 Transformation factor for the massa,

The transformation factor for the maissderived based on the requiremh thatthe
kinetic energy for the untransformed beam is the santbeakinetic energyor the
point in theSDOFsystem. The kinetienergyfor anuntransformed beam and SDOF
system camhenbe expressed as

X=

"m(x) r(x)*

E:eam - ﬁ dX (33)
- 2
m v’

ES = 2 : (3.4

Wherem {x) is the mass per unit length is the velocity in the system poiahdme is
the equivalent mass

Thevelocity in both cases can beitten as
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_ du(x)
dt

(3.5)

du
= 3.6

Combining equation$3.3) to (3.6) with the requirement ofqual kinetic energy for
both systems results in the equation

mu? = |_7]m'(x) Qu(x)?dx (3.7)

x=0
Thus, he equivalent mags. can be expressed as

m, = k,m (3.8)

e m

and together with equatiorf3.7) and (3.8) the general equation for the mass
transformation factor can be stated as

x=|
Am' (x) Qu(x)* dx
k - x=0

m

(3.9)

2
mu

When consideng a case when the mass along the beam is constant the e{@i8jion
can be rewritten with

m=m'l (3.10
to be
x=I
A (x) % dx
L = }Qu (3.12)
I

3.3.3 Transformation factor for the load a¢

The @ame principle is used for the load as for the mass but here, the untransformed
beam shallabsorbthe same amount of external work as the SB@$tem. The
external work done by staticexternal lad foranuntransformed beam ardSDOF
system is

X

=|

W, = (x) Qu(x)dx (3.12)
x=0

W = Fu, (3.13
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As definedin Section2.6the equivalent loador the SDOFsystemis
F,=k.F (3.19

By using equatiosn (3.12) to (3.14) and therequirement okequal external work for
both sptems the expression for the transformation factor can be written as

A
P oo oo (3.15)

F

Fu

S

When considering a case whetbe load along the beam is constant the
equation(3.15) can be rewritten together with

F = I;]Q(X)dx = (3.19)

x=0

to be

(3.17)

3.3.4 Examples of tabulated transformation factors

The transformation factorfer beams are not derivad this master thesis sincbe
emphasis of this project iso study the plate. Insteackxamples of tabulated
transformation factorgollectedfrom Johansson and Laine (2008 presenteth
Table3.1 andTable3.2.

Table3.1 Tabulated transformation factors for distributed lo&aom Johansson
and Laine (2009).
Uniformly distributed load
\ | P ] {4 ] {4 ! |
A y Q4 * ¥ * ol I *
Deformdion curve elastic case
k. 0.504 0.406 0.483 0.257
k. 0.640 0.533 0.600 0.400
k.. 0.787 0.762 0.805 0.642
Deformationcurve plastic case
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k. 0.333 0.333 0.333 0.333
k. 0.500 0.500 0.500 0.500
k. 0.667 0.667 0.667 0.667
Table3.2 Tabulated transformation factors for point logekom Johansson and
Laine (2009).
Point load
P i
Deformationcurveelastc case
k., 0.486 0.371 0.445 0.236
k. 1.000 1.000 1.000 1.000
k. 0.486 0.371 0.446 0.236
Deformatian curveplasttc case
k., 0.333 0.333 0.333 0.333
k. 1.000 1.000 1.000 1.000
K. 0.333 0.333 0.333 0.333

3.3.5 Solving the equation of motion

The equation of motion can be solved analytically. However, rifay bea very time
consuming solutiomlepending on what case is studidsother way to solvd is by
using numerical solution methodSuchmethods are approximate but witlorrectly
handled give a result dse to the analytical methods.n
di f f er e n ciseusedtegetiheo with the software Matlafhis method is @

t his

master

t hesi s

explicit method, meaning thahe new calculated value is based on the previous time
step valueThe algorithm for this method is adopted from Johansson and Laine (2009)
and is presented BAPPENDIXA.

3.4 Hand calculation

As in the equation of motion model the hand calculations can be based on the SDOF

systemand the information of energy balandeis important to know thathe hand
calculation model is only to be used in the preliminary design to getroaigh
estimationof the responsér the structural elemenEven though simple, it may still
be very useful in order to get an estimate of the final response of the structure.
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The capacity of the beam decidedby how muchthe beam canleform before it
collapsesFromSection 2.4.5the deformations can be calculated as

Ug = Me = \/kkmFm (3.18)

for an elastic material,

12 12
U, =——= < 3.19
" 2mR_ 2k __mR_ (319

for a plastic materialand
uep = uep.el + l“Iep.pl (320)

for an elastoplastic material where

Uy = — (3.21

Zepel (3.22)

3.5 FE-analysis

3.5.1 Restrictions

The finite element (FE) analysis is carried out in the softwddNA. 2-D beam
elements will be usedn order to simplify the analysis. hE reinforcement and
concretds modelled asn equivalent materiaBecause of this, some spedaaltions
havebeen madeThe following Sectiors describe the modifications made in order to
model the reinforced concrete.

3.5.2 Cracked elasticity modulus

In the uncracked state the reinforcement have stimo effect at all and the beam can

be modelled as a solid concrete beam. However, when the beam is in the cracked state

the reinforcement have a large impact and need to be considerechpture the

stiffness for the cracked reinforced concrete a new ¥aog 6 s modul us has
calculated as

E, =—E, (3.23)
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whereE,, I, andE;, I, i s t h e mydolusragdbosnentof inertia for uncracked
and cracked stateespectivelyNote here that this is ontjone in order to capture the
stiffness of the equivalent material and t|

3.5.3 Choice of material response different sections

The only difference between thalastic and elastoplastic case is the choice of
Y o u nrgodwdus. The ideal plastic material showrFigure2.9 canna be modelled

in ADINA. Instead, ther o ung 6 s hasoleen |mul8plied with 100 times the
uncracked stiffness which will result in a response thalase enough to the ideal
plastic case. For the elastoplastic casestlifnessis chosen tde the same asn the
cracked statand can be calculated according3®3). This assumption will result in

a larger deformatiorthan if the bilinear model of both uncracked and cracked
modulus would have been used.

The earlier Mastertheses Nystrom (2006) and Ek and MattssoR0{0, have
modelled the beam with a plastic or elastoplastic element in the naddlelastic
elements in theest of the beam. The problem wghch modellings that when the
middle element plasticises the elastic elements will start to oscillate on each side of
the plasticised element as shownFigure3.7. This is bdéieved to be one of the
reasons why the earlier Master thedégstrom (2006) and Ek and Mattss@010,

have found a divergence betweEi-analysisand the calculations based on the
equationof motion To avoid this problem here, all the elements willnbedelled as
plastic or elastoplastic depending on which case is of interested.

Plastic
element

Figure3.7  The elastic element oscillates on each side of the plastic element.

3.5.4 Element integration points

In this master thesis, compared to previous master thesis, there has been an interest of
changing the ultimate moment capacity from a shape of nearly ideal plastic to a shape
where yielding in the outer fibers is the limit, deigure3.8. Previous studieby Ek

and MattssonZ2010 with 7 integrationpoints over the heighlghowedthat the output
moment capacity was not equal to the expected moment capacity. The change of the
shapeof ultimate moment capacity 3 integration points is done in order to get the
expected moment capacity.
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stress stress

(a) (b)

Figure3.8  The Stress distribution over the height of the beam for (a) 7integration
points (b)3 integation points.

Since the FEmodel is simplified to a homogenous and isotropic material there is a
need to calculate a so called fictitious yield stress. This fictitious yield stress will be
inserted iNADINA to get the same material responséhasreinfoced concrete beam.
From basic equations a required moment capablty, can be calculated and with
this information the fictitious yield stre$g@anbe expressed as

[ Wel
fr, = (3.24)

where W, is the elastic bending resistancéor a stress distribution shown in
Figure3.8b, maybeexpressed as

2
w, = WZ (325

The integration method, Newtddotes,is here choseffor the stiffness matrix in the
FE equationsT his choice is done because the positions of the antegration poing

are located in the edge fibers in the height direcbibthe elementand the limit for
the yield stress ilcated at th@utmost fibers. The positions of the integration points
in NewtonCotes can be seen kigure3.9. This method is default iRDINA when
using beam elements.

Figure3.9  The position of the integration point in height direction for the Newton
Cotes method.
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It is of importance to adose 2Dbeam elements wharsing 3 integration points due
to limitations in the software prograADINA. Otherwise when choosing 3eam
elementsADINA automaticaly sets to 7 integration points.

3.6 Example

3.6.1 Scenario

A charge of 125 kg TNT detonates on a distance of 5 m from a building resulting in
an impulse load of 2800 Nsfmwith a maximum peakressureof 5000kPa hitting

one of the building sides. The building is a mstiory building with a height of 2.7 m

for each floor. The wall facing the explosion is a reinforced concrete wall with a
crosssection as shownin Figure3.10. The concrete is of qualityC20/25and the
reinforcement is in class B50Will the wall be able to resist the exgion?

h=0.35m d=0.31m

Figure3.10 CrossSection of the studied wall.

The control will be made for four casesincracked (state 1), crackéstate 11), ideal
plastic (state Ill) and the elastoplastic case which is the case most accurate to reality.

3.6.2 Assumptions and simplifications

1 The load isassumed to beiangular and uniformly distributed over the entire
wall.

1 There are no windows or othieregularities in the wall

1 Theconnectiorwall to slab is free to rotate and the wall is not continuous over
the floor slabs

1 The supportare rigid.

1 The wall is émplified to a beam witlonly supported at two opposite sides

With these assumptions theall can besimplified to a 2.7 m long simply supported
beam with a wide per unit length, i.e. a width of 1 m,Egere3.11.

| L

[=2.7m w=10n
e : +—

Figure3.11 Dimensions of the wall.
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This system can then bsimplified further to the SDOBystem described in
Sectian 2.6. Notehere that the equation of motion for the SB&ystem is

k__mé R = F(t) (3.26)

which means that only the mass needs to be transformed équavalent quantity
while the stiffness and load will remain the same.

3.6.3 Transformed mass
The total mass of the beam is

m=r GO = 2400 A.0®.35 .7 = 2268 kg (3.27)
This will then be modified with the factos,r which depends on the bodary
conditions, typ of load and if the beam haséasticor plasticresponse. According to
Table3.1 anris

Koo =k, =0.788 (3.28)

for the elastic casand
Koe . =0.667 (3.29

for the plasticand elastoplasticases, and the equivalent mass will finally be

=k_., On=0.788 (2268 = 1787 kg (3.30

1l mF |

=k On = 0.667 (2268 = 1512 kg (3.3))

1l mF 1l

3.6.4 Stiffness and internal resistance

The deformation of &imply supported beam subjected to an uniformly distributed
loadis according taJohannesson and Vretblad (20@§ual to

4
u=— (3.32)
348 El
which will give the stiffness
| 384 .EI
k=229 3 (3.33)
u u 5 |
The momenbf inertiafor theuncracked beam is approximately
3 = 3
I, = wh_ _1000CB50° _ 3.57A0° mm* (3.39)

12 12

38 CHALMERS, Civil and Envionmental Engineering Ma st e 208338 Thesi s



wherew and h is the width and height of the beam. Tim@ment of inertiafor the
cracked beam ideterminechpproximatelyj.e. assumingoure bendingndneglecting
the effect othe top reinforcemnt. The equation is

3

+aA (d- x)* (3.35)

wherex is the height of the compressed zohkis theratobet ween t he Youn
modulus for the reinforcement and concrete as

E, 200
==—=67 (3.36)
E 30

[

As is the amount of reinforcement

A 201
A =2 = =1005 mm° (3.37)
s 0.200

andd is the effective height
d=h-c=350- 40 = 310 mm (3.38)

The height of the compressed zona oaw be expressed with help of equilibrium

wxi+aAsd
x=—2 (3.39)
WX + aA

and can be rearranged to

<+ 2ah,

(x- d)=0 (3.40)

w

The equatior§3.40) is solved to

aA, [aaA.3 2aAd  6.7(1005
X=- + . |oe o + = - +
- w 1000

QW

(3.41)

& 205.7 005 (310
o + =58 mm
s 1000

£6.7 005
e
¢ 1000

and insertinghis in (3.35) gives

1 58° " y "
Ly = @ +6.7 005 §310 - 58)° = 4.8¢20° mm * (3.42

The ratio betweethe uncraked respectively cracked moment of inertia is
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I
g=—=7438 (3.43

Finally, the stiffness foanuncracked and cracked beam can be calculat=d

384 .30A0° (3.57 A0°
k, = e

| . =4.2340° N/m (3.49
5 2700

_ 384 30 &o®* &8 o’

. 7700° =5.6A0" N/m (3.45

When the plastic case is studied the deformation of the beam is no longer following
the elasticdeformationshapeand the stiffnesss of no importancelnstead, ti is the
internal resistance which is of importance and it can be calculated by setting the
moment capacity equal to the maximum field moment. The momentigaf@ca
rectangular beam is

M, = f A(d- bx) (3.46)
wherefy is the yield stress for the reinforcement @b a stresdlock factor from
Eurocode 2 CEN (2004 he heighbf the compressed zomes calculated as

fyA, 500 Q005
af,w 0.81(20 &000

X =

=31 mm (3_47)

wheref. is the concrete compression strength &hi$ another stresblock factor
from Eurocode 2 CEN (2004)Equation(3.46) together with(3.47) gives the final
moment capacity as

M, =500 A005 310 - 0.416 (B1) = 150 kNm (3.48

rd

The maximum field moment for a simply supported beam is

M = (3.49)

whereq is a static load and together with equatid48) the internal resistance can be
calculated to

8M, 850

= 444 kN (3.50
| 2.7

R=ql =

For the elastoplastic case ttéfness of theelastic part is approximated ¢orrespond
to that of thecrackedstate. This will givea larger deflection than in reality and is
therefore on the safe side, deéigure3.12. When the ultimate internal resistarReas
reached the material will enter the plastic staté start to yield.
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Figure3.12 Assumed elastoplastic material response.

3.6.5 Required deformations

The total impuls load that acts on the beam is

I =w0d0=1.02.73800 = 7560 Ns

The elastic deformation thencalculated as

u =

|
el /mk

which gives

for the uncracked state

7560
u, = =8.7 mm

|
V1787 6.2 A0°®

and for the crackedae

7560
u, = =23.9mm

1]
V1787 5.6 107

Theplastic deformation is given by

2
|

u, =
" 2Rm

and with current indata

7560 °
u, =— 5 =42.6 mm
244 A0° As512
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For the elastoplastic material the elastic part will add additional resistance and
therefore less plastic deformation is needed. The maximum elastic deformation is
calculated as

R 444 40°

K seao’ oMM (357

uep.II =

and the plastic reduction will therefore be

l"Iep.ll

Du,, = . = 4.0 mm (3.58)

This will give the plastic deformation

uep.lll =uy,

- Du,, =42.6- 4.0=38.6 mm (3.59
and the total elastoplastic deformation can be calculated to

Uy, = Uy, * U, =7.9+38.7=46.6mm (3.60)

3.6.6 Equivalent static load

The equivalent static load is a static load that gives the same deformations as the
impulse des. For structural engineers, it can be used to give a better understanding
for the loads acting on the structure since they are more experienced with static loads
and have developed a fifeelingo for them.

The impulse is uniformly distributed so the equevdl static load will also be
uniformly distributed. From equatid8.50) it can be calculated to

0= " (3.61)

So for a beam with elastic respertbe equivalent statioad is
g =—=— (3.62)

which for the uncracked state gives

_42G0°®.7¢0°

o =1353 kN/m (3.63
2.7
and for the cracked state
.. 7 = - -3
- 5600" &3.940° _ 496 KN/ (3.64)

2.7

For a beam with a plastic response the equivalent static load can be calculated as
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qu = |_ (365)

and with current indata

_ 444 Q0°

Qu =

=164 kN/m (3.66)

With the equivalent static loads and equa{®49) the maximum field moments can
be calculated to

= 1387 _ 1233 kNm (3.67)
. = g = 452 kNm (3.68
14T 149 kNm (3.69

It should be noticed thatn assumed elastic response results in deghands on the
moment capacitfor the structure.

3.6.7 Maximum deformation capacity

For the elastic case there are no limits for the deformation capacity and therefore such
a controlis not necessaryinstead the maximum field momemialculated from the
equivalentload, is compard with the bad capacity of the beame. the beam is
controlled as a normal static case with the equivalent loaduasformly distributed

load. However, for the plastic case the rotation capacity will be the limiting factor for
the beam and a deformation control accordmBurocode 2 CEN2004)is therefore
carried out.
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According to Johansson and Laine (2009) the diagraBuimcode 2 CEN (20043ee
Figure3.13, can be used for impulse loaded structures.

g [10 ®rad]
35 f | |
’ /(;)\ - == ClassC
30 ; ~ 1. ™~ - Class B [
/7 T ~ < C 50/60
B
1y i__> ; ," ~
2[}. — .~ Crushing of N C 90/105
I Concrete ~ ~ I
15 Steel ~ /-
Ripped Off ~ ~— e
10 /—’/x ‘7“‘““;\ I~
< C 50/60 ~—— —~
5 i — M""“"ﬁ--.\
C‘ 90/105 —
0

0 005 0,0 0,15 020 025 030 035 040 045
x/d

Figure3.13 Diagram from Eurocode 2 CEN (2004kshowing plastic rotation
capacity.From Johansson and Laine (2009).

The diagram can only be used for concrete quality lower than C50/60 if

g ¢ 0.45 (3.70)

and with current indata

X_3 _G1c04s (3.72)
d 310

this is okay.

The diagram is only accurate if the shear slendereess3 fof other values the
rotation capacity should be multiplied by a factor

k, = 3 (3.72
wherea-is
/ = XE (3.73)

and Xg is the disance between the maximum moment and the zero moment, see
Figure3.14.
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Plastic hingt

Figure3.14 Simply supported beam showing distange x

For this exam|e when the beam is simply supported the shear slenderness is

X 1/2 2700/2
;= X0 e = 4.35 (3.74)
d  d 310

and the rotation capacity should be multiplied with a factor
kK, =, —= =12 (3.79

So with a concretguality of C20/25, theainforcement in class B and theéd = 0.1
the plastic rotation capacity is according=igure3.13

g =1140°° rad (3.76)
and with thek,factor the plastic rotation is

g, =g&, =1140°A.2=13.240"° rad (3.77)
Now the maximum deformation capacity for the beam can be calculated to

g0 13280°Q7
2 2

=17.8 mm (3.78)

urd

3.6.8 Reallts

The required deformation for the plastic and elastoplastic case is almost bie abu

what the beam can deforire. the wall will not be able to resist the explosion. It will

first crack, and then plasticise and when the rotation exceeds thetgdpacvall will

finally collapse.Since the plastic state is reached the elastic state has been passed and
the elastic case does therefort needto be controlled.

The deformation against tinfer the elastic materids plotted inFigure3.15 for the
different calculation methods. As can be seen the elastic analyses comcideell

in between the different methoddowever this is not the case for the plastand
elastoplasti@analysessshown inFigure3.16 andfurther discussion on this subject is
donein Section3.7.
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Figure3.15 Deformations ovetime for (a) uncracked case (b) cracked case.
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Figure3.16 Deformations over time for (a) plastic case (b) elastoplastic case.

Figure3.17 shows the relation between force and deformation for tithe cases;
elastic and plagt. The area under the curves is equal to the executed work and should
be the same for both the internal and external work.
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Figure3.17 The relation between force and deformation for (a) uncracked case (b)
cracked case (c) plastic case.

The internal work is calculatddom the Figure3.17 to
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