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Design with regard to explosions

Master’s Thesis in the International Master’s Programme Structural Engineering

ULRIKA NYSTROM
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Division of Structural Engineering
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Chalmers University of Technology

ABSTRACT

When designing a construction to be able to withstand the high pressure caused by a
shock wave simplifications can be used in order to facilitate the calculations. By
literature studies simplified methods used to analyse beams subjected to dynamic
loads are compiled and in some cases also compared with FE-analysis in order to
verify the results.

The method of transforming and reducing deformable structures into single degree of
freedom system, giving calculations easy to handle, is discussed in this report. When a
beam is simplified into a single degree of freedom system the beam is assumed to
have a specific shape of deformation and therefore tabled beam equations can be used
in order to estimate the capacity of the beam. The beam equations can be used when
the load is either infinity short (impulse load) or infinity long (pressure load). In order
to utilize these equations also for arbitrary load durations so called damage curves are
used. The behaviour of the structure subjected to dynamic loads can also be analysed
by using an equivalent static load, where the impulse load is substituted with a static
load that will give deflections corresponding to the ones achieved with the impulse
load.

The simplified methods discussed above are valid for beams in general but since
shelters often are made of reinforced concrete, which have a complex behaviour, these
beams and their response to both static and dynamic loads will be studied more in
detail. A short and brief review of the minimum requirements when designing shelters
due to the Swedish shelter regulation will be done.

Key words: Explosions, dynamics, impulse load, reinforced concrete, SDOF system,
equivalent static load, damage curves



Konstruktion med avseende pd explosioner
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SAMMANFATTNING

Vid analyser och berdkningar av byggnader utsatta for explosionsartade laster kan
forenklade handberékningsmetoder anvéndas. Genom litteraturstudier har nagra
forenklade berdkningsmetoder studerats och sedan samlats i denna rapport. I vissa fall
ar resultat berdknade med hjdlp av den forenklade berdkningsmetoden jamforda med
resultat frdn FE-analys for att verifiera metoden.

Balkar, och andra deformerbara kroppar, kan omvandlas till ett enfrihetsgardsytem
som tillskrivs ekvivalenta egenskaper for att ge samma deformation som den
deformerbara kroppen. Nir balken har omvandlats till ett enfrihetsgardsystem kan
tabellerade, s& kallade, balkekvationer anvindas for att direkt uppskatta balkens
respons, dessa dr dock begrinsade till att bara vara applicerbara for laster som beter
sig mycket likt antingen en idealisk impuls- eller steglast. Med hjélp av skadetabbeler
eller skadekurvor kan ocksa responsen for mer generella laster uppskattas. For att
kunna utnyttja den for ingenjorer vilbekanta berdkningsgingen for statiska lastfall
kan en ekvivalent statisk last berdknas utifran det dynamiska lastfallet.

De forenklade berdkningsmetoderna dr generella och kan anvidndas for olika balkar
och materialtyper. Eftersom skyddsrum, och andra byggnader som dimensioneras for
explosionslaster oftast 4r gjorda av armerad betong behandlas detta material mer i
detalj.

Anvindningen av de ovan nimnda forenklade berdkningsmetoderna kriver dock en
viss fOrstaelse av hur balkar utsatta for starka, dynamiska laster uppfor sig i
verkligheten.

Nyckelord: Explosioner, dynamik, impuls last, armerad betong, enfrihetsgradsystem,
SDOF-system, ekvivalent statisk last, skadekurvor
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Area

Equivalent area in stadium I

Equivalent area in stadium II

Damping

Equivalent damping

Modulus of elasticity

Inclination of stress-strain relation in elastoplastic range
Modulus of elasticity for concrete

Modulus of elasticity for steel

Shear modulus
Moment of inertia
Impulse (general)
Characteristic impulse

Stiffness
Inclination of load-displacement curve in elastoplastic range
Equivalent stiffness

Length of the beam

Mass

Moment

Moments at support A and B, respectively

Equivalent mass

Maximum moment in elastic range

Ultimate moment, all fibres in a cross-section have yielded
Maximum field moment

Support moment

Moment when yielding starts

Axial force
External load

Mean value of external load
Equivalent static, concentrated, load
Characteristic pressure load

External load when first crack occurs
External load when yielding starts
External, ultimate load

Peak value of transient load

Internal force
Internal force when first crack occurs

Equivalent internal force

Maximum internal force
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Internal force when yielding starts

Shear force
Kinetic energy
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Acceleration

Mean acceleration

Width of beam/cross-section

Effective height of cross-section
Characteristic value of material property
Design value of material property

Yield stress for steel

Height of beam/cross-section
Distributed impulse
Distributed load

Equivalent static, uniformly distributed, load

Distributed load when first crack occurs

Maximum value of distributed load in elastic range

Distributed ultimate load

Distributed load when yielding starts

Load when plastic hinges are formed but the beam is not yet a mechanism
Momentum

Time

Total time duration of transient load

Displacement/deflection

First derivative of u with respect to time ¢, velocity
Second derivative of u with respect to time ¢, acceleration
Curvature

Displacement/deflection when first crack occurs
Displacement/deflection corresponding to ultimate load
Displacement of system point

Displacement/deflection when yielding starts

Velocity

First derivative of v with respect to time ¢, acceleration
Mean velocity

Velocity of system point

Coordinate
Coordinate, distance fro compressed edge in cross-section
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Strain

Strain velocity

Concrete strain

Strain when first crack occurs
Ultimate concrete strain
Strain for ultimate load
Strain when yielding starts

Impulse load factor
Partial safety factor taking the safety class into consideration
Partial safety factor taking the insecurity when determining parameters

into consideration
Pressure load factor

Partial safety factor used in the Swedish code BBK 04

Transformation factor for linear elastic material

Average value of transformation factor for linear elastic and ideal plastic
material

Transformation factor for ideal plastic material
Transformation factor for the internal force

Combined transformation factor for the internal force and external load
Transformation factor for the mass

Combined transformation factor for the mass and external load
Transformation factor for the external load

Density

Reinforcement amount

Stress
Concrete stress

Stress when first crack occurs
Ultimate stress/Yield stress
Steel stress

Stress when yielding starts
Yield stress

Circular frequency
Shear stress
Poisson’s ratio
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1 Introduction

1.1 Background

Explosions are accidental or intentional actions that need to be considered in the
design of structures for various applications. Except from apparent cases, such as
military installations and civil defence shelters, design with regard to explosions is
required for instance in the processing industry and for tunnels.

When designing a construction to be able to withstand the high pressure caused by a
shock wave (for example shelters), simplifications can be used in order to facilitate
the calculations.

The methods used are rather well documented when having a linear elastic or ideal
plastic material but shelters, and other structures exposed for shock loads, are often
made of reinforced concrete which has a more complex behaviour. This makes the
application of the methods more complicated and in order to keep the calculations
easy to handle simplifications must be used. In practice, engineers usually not need to
perform dynamic calculations why it is of interest to translate a dynamic load and its
affects to a static load case giving similar response.

1.2 Aim

The aim of this thesis is to put together information about available design approaches
for impact loading on structures in general and reinforced concrete structures in
particular.

It shall be described how structures can be designed for impulse loading by means of
simple hand-calculation approaches and to examine the agreement between such
simple methods and more advanced analyses like FE analyses. These methods and the
corresponding calculation processes shall be carefully described and documented.

The response of a structure subjected to a load also depends on the material behaviour
and the difference in the response for linear elastic and ideal plastic materials shall be
examined.

1.3 Method

Literature studies have been done in order to find, understand and compile different
simple methods used when analysing the behaviour of structures exposed for transient
loads. The agreement between such simple methods is investigated by comparing
analyse results with the real behaviour, assumed to be found by using finite element
method. The finite element analyses are made by means of the commercial finite
element software ADINA (2004). Literature studies have also been made in order to
get a deeper understanding of explosions, their appearance, laps and effects.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 1



A beam with cross-section chosen according to requirements in the Swedish shelter
regulations will be analysed. The capacity of the beam is calculated by means of the
Swedish code BBK 04, see Boverket (1994), and directions in the Swedish shelter
regulations, Rdddningsverket (2003).

1.4 Limitations

The methods described in this thesis, used in order to simplify analyses of structures
subjected to transient loads, can be used on different types of deformable structures.
However, only the application on beams is shown in this thesis.

Complex material behaviour leads to complex calculations and expressions why only
idealized material behaviours; linear elastic, ideal plastic and trilinear material
respectively, is used here. When analysing concrete beams the effects of temperature,
creep and shrinkage is not taken into account.

Explosions and their effects is a huge subject which requires long time to fully
understand. Due to the limited time and in order to keep this scope within reasonable
limits only explosions in air and the transient loads caused by them are discussed in
this thesis. Secondary effects from the explosions such as collapse of nearby buildings
are also not taken into account.

1.5 QOutline of the report

The outline of the report can be divided into basic theory (Chapters 2 to 5), design
methods (Chapters 6 to 11) and application of the design methods (Chapter 12).

In Chapters 2, to 5 basic theory of explosions in air, material responses, dynamics and
solutions methods for differential equations are shown in order to facilitate the
understanding for the rest of the report.

Since analyses of the response of beams subjected to dynamic loads requires a good
knowledge of dynamics and heavy calculations, not manageable to perform by hand,
it is of interest to simplify these calculations. In Chapter 6 it is discussed how the
response of beams subjected to dynamic loads can be calculated by transforming the
beam to an equivalent single degree of freedom system (SDOF system) which will
achieve the same displacement as a prescribed point in the beam, the so called system
point. When transforming beams to equivalent single degree of freedom systems
transformation factors for the load, mass and the internal force are used. These are
derived for linear elastic and ideal plastic material respectively In case of trilinear
material the transformation factors are not derived instead it is discussed how the
transformation factors for linear elastic and ideal plastic material can be used in order
to transform beams with trilinear material behaviour, for example reinforced concrete
beams, to equivalent single degree of freedom systems.

2 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



In Chapter 7 the response of a beam calculated by use of the method described above
is compared with results from finite element analyses, which are assumed to give
results close enough to the reality.

The choice of transformation factors in case of trilinear material is not trivial and is
further discussed in Chapter 8 where also the FE models used in Chapter 7 are
discussed.

Characteristic pressure and impulse loads are two idealized loads which are defined
and discussed in Chapter 9. Here also expressions for the maximum displacement for
single degree of freedom systems and to beams equivalent single degree of freedom
systems are derived.

When calculating the response of a beam subjected to a dynamic load differential
equations have to be solved for each time step in the analysis. Even though the use of
equivalent single degree of freedom systems simplifies the calculations a lot it is very
hard to perform results for a general load case without use of computers.

The response of a general impulse load acting on a beam or single degree of freedom
system can be calculated by replacing the impulse load with an equivalent static load.
The expressions for the, to the impulse load, equivalent static load is derived and
shown in Chapter 10.

In case of a general load, somewhere in between a characteristic impulse and pressure
load, the response of a single degree of freedom system can be estimated by use of
either tables of damage or damage curves. In Chapter 11 the values in the tables of
damage are calculated and the corresponding damage curves are shown for linear
elastic and ideal plastic material. It is also discussed and shown how these can be used
in practice.

Concrete is a complex material and therefore also the response of reinforced concrete
beams are complex. In Chapter 12 the behaviour of a reinforced concrete beam
subjected to dynamic loads is discussed.

In Chapter 13 conclusions and ideas on further investigations are shown.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 3



2 Explosions

Here only a very brief review of explosions and their resulting shock waves are
shown. For more and detailed information about this subject the reader is referred to
for example Rédddningsverket (2004).

When a charge detonates in the air a sphere with very high temperature and pressure
will form. This sphere will expand very fast and is spread as a shock wave from the
centre of detonation. The temperature and the pressure will decrease with increased
distance from the detonation centre, see Figure 2.1 below.

Centre of detonation

The pressure and temperature
in the shock front decreases
with increased distance to the
centre of detonation

Figure 2.1  Schematic figure for detonation in air.

An idealized shock wave is shown in Figure 2.2 where the different phases can be
seen. The shock front gives an instantaneously increase of pressure (and temperature)
and is followed by the compression and negative phase. The meaning of the phases,
and the devastation they can cause, are illustrated in Figure 2.2.

Pressure
A

Compression phase

Negative phase

Shock front

» Time

Figure 2.2 Idealized shock wave.

4 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



Pressure

i/

© 3 —=-

Figure 2.3 House exposed to shock wave. Based on NATO (1996).

When analysing buildings exposed for shock waves the transient load is often even
more idealized than the one shown in Figure 2.2. In analyses made in this report the
transient loads are assumed to have a simplified appearance, see Figure 2.4 where P,
and ¢; is the maximum value of the load and the duration of the load respectively. The

negative phase is not taken into account and the load is often assumed to be triangular
in time.

i

v

Figure 2.4  Idealized transient load caused by explosions used in this report.

When a bomb detonates close to a reflecting surface the intensity and the spreading of
the resulting shock wave will be affected. For an idealized case, where the reflecting

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14 5



surface is assumed not to absorb any energy, the shock wave spreading close to the
surface will have twice the energy of a shock wave spreading in the air without any
nearby reflecting surfaces as shown in Figure 2.5. This can be explained by the fact
that half the energy amount is prevented from spreading in its natural direction,
instead the energy is reflected.

explosion

ALV

Free Corresponding free

Explosion close explosion

to reflecting
> surface )
L NV

.. ey =il RN
: . ’\'lll.'/' v {"-1:--; I .

./"||l\\

ar
e
,.'l'.

Figure 2.5

. y Half the energy is prevented
w7 7 by the reflecting surface

Explosion in air and close to reflecting surface respectively. Based on
Réiddningsverket (2004) where the notation W represents the size of the
charge.
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3 Materials

The response of a loaded structure is highly dependent of the material and its
behaviour. In this report only idealized material behaviour are discussed; linear
elastic, ideal plastic and a trilinear material. For ideal plastic and trilinear behaviour
the fibres in the loaded structure can yield, meaning that the theory of elasticity is not
applicable. In order to analyse a structure with plastic behaviour theory of plasticity
and plastic hinges (further discussed in Section 3.2) are used in order to predict the
response.

3.1 Material responses

3.1.1 Linear elastic material

In case of linear elastic material the stress ¢ is linear proportional to the strain ¢ in
compliance with Hooke’s law:

o=E} (3.1)

where E i1s the modulus of elasticity. A principle relation between stress and strain for
a linear elastic material is shown in Figure 3.1.

g

/e

> ¢

Figure 3.1  Principal relation between stress and strain for a linear elastic
material.

The internal resisting force R in a structure subjected to a load will thus be linear
proportional to the displacement u, i.e.:

R=K0 (3.2)

where K is the stiffness of the structure. A principle relation between the internal force
and the displacement for a linear elastic material is shown in Figure 3.2.
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VaLS

Figure 3.2 Principal relation between internal force and displacement for a linear
elastic material.

The maximum value of the internal force in a structure with linear elastic material is:
R =K, (3.3)

where u,,,, 1s the maximum value of the displacement. When the load is removed the
structure will return to its unloaded position.

3.1.2 Ideal plastic material

The relation between stress o and strain ¢ for an ideal plastic material is shown in
Figure 3.3 where o, is the yield stress.

Aa

> g

Figure 3.3 Principal relation between stress and strain for an ideal plastic
material.

As seen in Figure 3.3 no deformations will occur until the stress is higher or equal to
the yielding stress but as soon as the yield stress is reached and deformation starts the
stress in the structure equals the yielding stress.

The internal force R in a structure, with ideal plastic material, subjected to a load P
can now be expressed as:

R=P for P<R,6 ifalso u=0

R=R, for P2R, or u#0 S

where R, is the maximum value of the internal force. A principle relation between the
internal force and the displacement for an ideal plastic material is shown in Figure
3.4.

8 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



> u
Figure 3.4 Principal relation between internal force and displacement for an ideal
plastic material.

3.1.3 Trilinear material

Reinforced concrete beams have a trilinear material response. This is further
discussed in Chapter 12 but here the idealized behaviour of reinforced concrete beams
is shown. The idealized load-displacement curve for a concrete beam is shown in
Figure 3.5 where R,, is the internal force when the first crack occurs in the beam and
R,, 1s the maximum value of the internal force valid when the ultimate load level is
reached. u., and u,, are the values of the displacement when the first crack occurs and
when the ultimate load level is reached respectively. K is the stiffness before the first
crack occurs and K’ is the inclination of the curve in the range in between u,, and u,,.

AR

ZIK'

/¢

ucr upl

Figure 3.5  Principal relation between internal force and displacement for a
trilinear material.

The internal force R in a structure, with trilinear material, subjected to a dynamic load
P(t) can be expressed as:

R=Ku for P(t) <R,
R = RCI‘ + K'(u _uCI‘) for RCI‘ S P(t) < Rm (3'5)
R=R, for R, < P(?)

where R, also can be written as:

RCV = K B"C?" (3'6)
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The trilinear material response can be divided into elastic, elastoplastic and plastic
range as shown in Figure 3.6.

AN
>

] Elastoplastic range Plastic range u

Elastic range

Figure 3.6  The different ranges for a trilinear material.

A reinforced concrete beam will have linear elastic behaviour until yielding starts.
However, in this report linear elastic behaviour is assumed until the ultimate load is
reached meaning that the stiffness of the beam in the range in between R, and R,, will
change when the load increases, see Figure 3.7. This behaviour can be explained by
the fact that more and more cracks will occur in the beam when the load increases.

AR
R _
7
R A e
1 7
A&7 K, > K, for R <R,
v
// /ZKZ
v
/,/
Ve
, . >
U U,

Figure 3.7  Stiffness in the elastoplastic range for a reinforced concrete beam.

Consider a beam subjected to a transient load with maximum value P; large enough to
give the internal force a value R;. If the load is removed when R, <R;<R, the beam
will return to its unloaded position and the corresponding relation between the internal
force and displacement is shown in Figure 3.8.

10 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



u, Tu

Figure 3.8  Response of a concrete beam when loading and unloading a force F,.

The beam i1s reloaded with a transient load with maximum value P, and the internal
force will now reach a value R,. If the beam still is in the elastoplastic range

(R<R;<R,) and the load is removed again the response curve is as shown in Figure
3.9.

AR
R -
Rl' .
/f Kl
// dKz
,/
/,
T > 4
I/ll 1/12

Figure 3.9  Response of a concrete beam when loading and unloading a force P,.

If, once again, a transient load is applied, this time with maximum value P;, big
enough to reach the plastic range of the response curve (R;=R,,) and then the load is
removed there are plastic deformations, see Figure 3.10. The stiffness when unloading
is the same as the secant stiffness to the point (u,,R,,). As soon as the plastic range is

reached the stiffness of the beam is constant, as long as the failure criterion is not
fulfilled.
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Plastic displacement

Figure 3.10 Response of a concrete beam when loading and unloading a force P,.

3.2 Theory of plasticity and plastic hinges

In this section theory of plasticity and plastic hinges for beams with double symmetric
cross-sections are discussed. Theory of plasticity, as well as theory of elasticity,
assumes a linear strain distribution over the height of the cross-section.

In the elastic range, when no fibres in the cross-section yield, Hooke's law is used as
constitutive relation and the stress is linear proportional to the strain, see
Equation (3.1). Therefore also the stress distribution will be linear distributed over the
height of the cross-section in the elastic range. The stress and strain distributions in
the elastic range for a cross-section in a beam subjected to pure bending are shown in
Figure 3.11.

[
I /7
| M 1/ - 1/
: D E(z) o(z)= E(z) [E
N S B . P A e A /A
: R
Cross-section Part of the beam Strain distribution & Stress distribution o

Figure 3.11 Stress and strain distribution in beam subjected to bending (in elastic
range).

When the load applied to the beam, and consequently the bending moment inside the
beam, has increases the outer, most stressed, fibres in the most strained section will
reached the yield stress, see Figure 3.12.a. The maximum elastic moment has been
reached and can be expressed as:
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where o, is the yield stress, / is the moment of inertia and 4 is the height of the cross-
section.

For a rectangular cross-section the moment of inertia is:

3
1:%

= (3.8)

where b is the width of the beam.

Inserting Equation (3.7) into Equation (3.8) the maximum elastic moment for a
rectangular cross-section can be expressed as:

M,=0,7~ (3.9)

If the load increases the elastoplastic range is entered and the stress will only be linear
proportional to the strain in the part of the cross-section where yielding have not
started, see Figure 3.12.b. The higher load the smaller elastic part and a proportional
increasing curvature.

Just before all fibres in the cross-section has yielded the ultimate value of the moment
M, 1s reached. The case when the whole cross-section has yield is an idealized state
where the strain-stress curve has an infinitely long plastic range see Figure 3.12.c.
Since the elastic part of the cross-section is infinitely small just before all fibres yield
the ultimate moment, according to Samuelsson, Wiberg (1999), can be expressed as:

=g bE” (3.10)
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Yielding starts in ; :
a) .

the outer fibres
M=M,

Parts of the

b) cross-section has
yielded
Mel < M < Mpl

Yielding in the
whole cross-
section
M=M,

Figure 3.12 Stress and strain distributions in beam subjected to bending when a)
yielding starts in the outer, most stressed, fibres, b) parts of the cross-
section (and fibres close to the cross-section) have yielded and c) the
whole cross-section has yielded (idealized case).

When the ultimate moment M, is reached in the most strained section almost all
deformation occur here and in the very surrounding. The curvature is very large in this
section while it is rather small in the rest of the beam. Since the length of the part with
large curvature is very limited it can be assumed that all deformation takes place in a
very small deformable element, a so called plastic hinge. The rest of the beam is
assumed to be elastic and are therefore straight and the moment in the plastic hinges
are assumed to be constantly equal to the ultimate moment M,,. This reasoning is
shown in Figure 3.13 for a simply supported and a fixed beam respectively.
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Figure 3.13 Models with plastic hinges for a) a simply supported beam and b) a
fixed beam.

In case of simply supported beam only one plastic hinge is needed to create a
mechanism and if the load increases even more the beam will undergo uncontrolled
deformation.

For a fixed beam, with constant capacity, yielding starts at the supports and for a
certain load plastic hinges are formed here. Since no mechanism is formed yet the
load can be increased and the beam now acts as a simply supported beam subjected to
moment M,; at the supports. If the load remains constant at this level unlimited
deformations can, in theory, occur. However, when the load is increased yielding
starts also in the middle of the beam and when all fibres in this section have yielded a
plastic hinge is formed and the beam has become a mechanism, see Figure 3.13.b.
This is further discussed below where also the expressions for the moment at the
different stages are shown.

For the fixed beam, subjected to a uniformly distributed load, the outer most stressed
fibres at the supports will start to yield when the moment in this section is:
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where ¢, is the corresponding value of the uniformly distributed load and L is the
length of the beam.

q

E
2 Z

=
s

Moment distribution

Figure 3.14 Moment distribution in beam subjected to uniformly distributed load
according to theory of elasticity (¢ < q,,).

If the load is increased even more yielding zones will be formed at the supports and
for a certain load g, plastic hinges have been formed in these sections and the
moment is:

L2
M, = —q@% (3.12)

Due to the plastic hinges by the supports the beam now behaves like a simply
supported beam subjected to support moments AM,; and the uniformly distributed load
g if the load increases. The moment distribution is statically determinable. When the
load increases even more the moment in the midpoint of the beam will reach the
ultimate value M,; and the beam is just about to form a plastic hinge in the midpoint.
The moment in the midpoint is calculated by use of equilibrium conditions:

M. =M, = (3.13)

middle

The uniformly distributed load ¢ in Equation (3.13) is the load for which the
mechanism is about to form and it is expressed as:

16M
— (3.14)

q:qpl: Lz
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Figure 3.15 Moment distribution in beam subjected to uniformly distributed load
when mechanism is about to form (q =q ).
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4 Basic dynamics

The term dynamics is used for theory of moving systems and can be subdivided into
kinematics and kinetics. Kinematics is a pure geometrical description of the
movement while kinetics describes the cause of the movement (forces).

4.1 Kinematics

The simplest form of motion of a particle is when the particle moves along a linear
axis (the x-axis in Figure 4.1) and the position of the particle is described by a vector
X(t) at time ¢. At time ¢+t the position of the vector is x+4x.

© O » X
X x+MAx
t t+ At

Figure 4.1  Linear motion of particle.

4.1.1 Velocity

The velocity of a particle moving linearly can be derived by studying how fast the
position of the particle is changing. At time ¢ the particle has position x and at time
t+At the position is x+4x meaning that during the time interval A¢ the particle has
moved the distance Ax. The mean velocity during the movement from position x to
x+4x can then be stated as:

Ax
At

y =

4.1)

Letting the time interval A¢ go towards zero the change of distance Ax will approach 0.
The mean value of the velocity will then approach a boundary value that is defined as
the velocity of the particle at time ¢. The velocity of the particle is thus given by:

v(t)=v=lim—="=% (4.2)

By definition the particle is moving in positive direction if the velocity is positive and
vice versa.
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4.1.2 Acceleration

The acceleration of a particle that is moving linearly can be derived by studying how
fast the velocity of the particle is changing. At time ¢ the particle has position x and
velocity v and at time t+A4¢ the position is x+4x and the corresponding velocity is
v+4v meaning that during time interval 4¢ the velocity of the particle has increased
with A4v. The average value of the acceleration can be stated as:

Av
a=— 43
a= (4.3)

In the same way as when deriving the velocity of the particle the acceleration can be
written as:

= 5 (4.4)

When the particle is moving in the positive direction and the acceleration is positive,
the velocity is increasing. A negative value of the acceleration gives retardation. If,
instead, the particle is moving in the negative direction a positive value of the
acceleration gives retardation and if the acceleration is negative the value of the
velocity is increasing.

4.2 Kinetics

The response of bodies subjected to dynamic forces can be described by means of
differential equations. Before deriving these equations of motions for dynamic loads
the impulse of a load and the work performed by a load are defined.

4.2.1 Definitions of impulse and work
4.2.1.1 Impulse

Even though static, constant loads often are used in analyses loads are often varying in
time and in order to describe how these forces influences the motion of the structure
the impulse is introduced.

The impulse is defined as a step change in an object’s momentum. For a mass, M,
with velocity, v, the momentum is:

PEMDG (4.5)

At time ¢ the impulse is / and at time 7+4¢ the impulse is /+47 (see Figure 4.2)
meaning that the increase of the impulse during time A4z is 41. As mentioned above the
impulse is defined as the change in the momentum and the increase of the impulse can
therefore, by means of Equation (4.5), be written as:
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Al =Ap =M [y (4.6)

where 4p is the change of the momentum during time 4¢ and Av is the change of
velocity during time Az.

Load P(z)
A

I »Time ¢
Figure 4.2 Load-time diagram where P is the average value of the load in

between time t and t + M\t .

The average value of the acceleration a is defined in Equation (4.3) and together with
Equation (4.6) the change of impulse during time 4¢ can be written as:

Al = M & M (4.7)

By use of the second law of Newton where the force P is defined as the product of the
mass and the acceleration the average value of the force P is defined as:

P=MG (4.8)

By use of Equations (4.7) and (4.8) the change of impulse can now be written as:

Al = P [\t (4.9)
giving:
— Al
p=20 4.10
N (4.10)

Letting the time interval 4¢ go towards zero the change of impulse A7 will approach
zero as long as the impulse is not a characteristic impulse as shown in Figure 4.3. The
meaning of a characteristic impulse is further discussed in Section 9.2.
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Figure 4.3 Characteristic impulse.

The mean value of the force will then approach a boundary value that is defined as the
force applied to the particle at time z. The force applied to the particle is thus given
by:

Al _dI
Pt)=P=lim—=" < dI =Pt 4.11
() MO NF di @ @.10)

The change of the impulse can now, finally, be written as:

I+AI t=t+At t=t+At
de: J.P(t)dt o A= J.P(t)dt (4.12)
I = =

1=t t=t

The impulse for a load is thus:

t=4,

= J'P(t)dt (4.13)

where ¢, 1s the time for which the load is removed.

4.2.1.2 Work

Work is a transfer of energy from one physical system to another, for example from a
load to a structure. When there is no frictional force and a force acts on a body, the
work done by the force is equal to the increase of the kinetic and potential energy of
the body since all the energy expended by the exerting force must be gained by the
body. However, in practice some energy will be lost due to friction and heat
development.

When a particle is at position x the work is /7 and at position x+4x the work
performed by the external load is /7+A411 (see Figure 4.4) meaning that the increase of
work when the particle is moving the distance Ax is A71.
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Y x+Ax > Distance x

Figure 4.4  Load-distance diagram.
The change of work, represented by the shaded area in Figure 4.4, is expressed as:

An=FPmx -~ p=201 (4.14)
Ax

where P is the average value of the force within the distance Ax.

Letting the distance Ax go towards zero the change of work 477 will approach 0. The
mean value of the force will then approach a boundary value that is defined as the
force causing the displacement x of the particle. This force is thus given by:

Pey=P=1im20 =9 an = p(x) i (4.15)
a0 Ay dx

The change of the work can now, finally, be written as:

n+An x=x+Ax x=x+Ax
[an= [Pdx - AN= [Pdx (4.16)
n X=x X=x

The total work performed by a load P is thus:

X:Xmav

N= [Pdx (4.17)

x=0

where X, is the total displacement caused by the load.

4.2.2 Mechanical vibrations

When deriving basic dynamic equations a body where the position can be defined by
one coordinate is used. Such structure is said to have one degree of freedom and is
also referred to as single degree of freedom system and abbreviated as SDOF system
(compare with MDOF, Multi Degree Of Freedom system). The mass-spring system in
Figure 4.5 is an example of a system with one degree of freedom.
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Figure 4.5  Mass-spring system with single degree of freedom, (SDOF).

The single degree of freedom system in Figure 4.5 represents a rigid mass, M,
attached to a spring. In a rigid body there is no relative displacement between
arbitrary points in the body. R is the internal force in the spring and C is the damping
of the system.

When a mechanical system is moved from its unloaded equilibrium position the
internal forces (for most materials) endeavour to bring it back to equilibrium position.
This behaviour causes oscillations.

If vibrations take place in the absence of external forces but in presence of internal
frictional forces the motion is referred to as damped free vibrations. If also the
frictional forces are assumed to be absent the motion is called an undamped free
vibration. If an external force is applied to the system the resulting motion is called
forced vibration. The oscillation behaviour depends on whether the system is damped
or undamped and if the vibrations are forced or not.

The undamped vibration is a hypothetical case but is, in many cases, assumed to be an
adequate approximation of the actual damped vibration experienced by real structures,
which always have more or less internal friction. In this report the behaviour of
damped systems are only briefly described since the influences of damping is
neglected in the following chapters.

4.2.2.1 Undamped free vibration

Consider a mass attached to a spring as illustrated in Figure 4.6 where the mass can
move only in the vertical direction and therefore has only one degree of freedom. The
unloaded equilibrium position for the system is noted as u, and is the static
equilibrium position when the dead weight is the only present load. u is the coordinate
describing the distance from the unloaded equilibrium position to the current position.
The mass M is attached to a spring with linear elastic behaviour with stiffness K. The
stiffness factor K is equal to the force required to move the system a distance. The
internal force R for a linear elastic system can be expressed as:

R=Ku (4.18)
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Figure 4.6  Mass undergoing undamped free vibration.

When the body is moved a distance u from the unloaded equilibrium position and then
released, the system will undergo an undamped free vibration about the unloaded
equilibrium position. The forces acting on the isolated body is shown in Figure 4.7
where Mg is the dead weight of the system.

Mg + Ku

Figure 4.7  Forces acting on the mass in Figure 4.6.
Due to dynamic equilibrium conditions the sum of the forces shall be zero.

Mg — (Mg + Ku)— Mii = 0 (4.19)
where u varies in time i.e. u=u(t).

By rearranging the terms in the equation above the differential equation of motion for
an undamped system with linear elastic behaviour is defined as:

Mii+Ku =0 (4.20)

Introducing the definition of the circular frequency w=,/K/M Equation (4.20) can
be written as:

i+ wu=0 4.21)
In a more general form the differential equation in Equation (4.20) can be written as:
Mii+R=0 (4.22)
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where the expression for the internal force R is depending on the material behaviour.

In expression (4.22) the internal force R is not necessarily given by a linear expression
(such as Equation (4.18)) and generally it holds that R#£Ku.

4.2.2.2 Undamped forced vibration

Still neglecting the frictional effects, consider again the system shown in Section
4.2.2.1. Now the system is subjected to an external dynamic load P(t) as shown in
Figure 4.8.

M

Ll ]

P(t)l u M
P(t)l

Figure 4.8  Mass undergoing undamped forced vibration.

The forces acting on the isolated body is shown in Figure 4.9.

Mg + Ku

1

i
Mgl

P() ¥

Figure 4.9  Forces acting on the mass in Figure 4.8.
Due to dynamic equilibrium conditions the sum of the forces shall be zero.
Mg + P(t) - (Mg + Ku) - Mii = 0 (4.23)
where the displacement u varies in time i.e. u=u(?).
By rearranging the terms in the equation above the differential equation of motion for

an undamped system with linear elastic behaviour subjected to a dynamic load is
defined as:
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Mii + Ku = P(t) (4.24)
In a more general form the differential equation can be written as:
Mii+R = P(t) (4.25)

where the expression for the internal force R is depending on the material behaviour,
and again it generally holds that R#Ku.

4.2.2.3 Damped free vibration

Using the same notations as in the case of undamped free vibrations (see Section
4.2.2.1) but also taking the damping into consideration the differential equation of
motion of a damped free system can be derived.

The system in Figure 4.10 where the damping of the system is noted as C is studied.

Figure 4.10 Mass undergoing damped free vibration.

When the body is moved a distance u from the unloaded equilibrium position and then
released the system will undergo a damped free vibration about the unloaded
equilibrium position. The forces acting on the isolated body is shown in Figure 4.11.

Cu
Mg + Ku

Wi

Mg

Figure 4.11 Forces acting on the mass in Figure 4.10.
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Due to dynamic equilibrium conditions the sum of the forces shall be zero.
Mg — (Mg + Ku) - Mii = Cii =0 (4.26)
where the displacement u varies in time i.e. u=u(?).

By rearranging the terms in the equation above the differential equation of motion for
a damped system with linear elastic behaviour is defined as:

Mii+Cu+Ku=0 (4.27)
In a more general form the differential equation can be written as:
Mii+Cu+R=0 (4.28)

where the expression for the internal force R is depending on the material behaviour,
and generally R#Ku.

4.2.2.4 Damped forced vibration

Again consider the damped mass-spring system in Section 4.2.2.3 but now subjected
to an external dynamic load P(z) as shown in Figure 4.12.

M
\ 4
P(t)i “1

M
P(t) i

Figure 4.12  Mass undergoing damped forced vibration.

The forces acting on the isolated body is shown in Figure 4.13.
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Figure 4.13 Forces acting on the mass in
Figure 4.12.
Due to dynamic equilibrium conditions the sum of the forces shall be zero:

Mg + P(t) — (Mg + Ku) - Mii = Cii =0 (4.29)
where the displacement u varies in time, i.e. u=u(?).
By rearranging the terms in the equation above the differential equation of motion for
a damped system with linear elastic behaviour subjected to a dynamic load is defined
as:

Mii + Cu + Ku = P(¢) (4.30)
In a more general form the differential equation can be written as:

Mii+Cii + R = P(¢) 4.31)

where the expression for the internal force R is depending on the material behaviour,
and generally R£Ku.

4.2.3 Beam vibrations

The eigenfrequencies for a structure are the frequencies for which the structure will
vibrate of its own accord when exposed to a perturbation. The shapes of the structure
for the different eigenfrequencies are called eigenmodes where each eigenmode is
related to one specific eigenfrequency.

Three different mode shapes, for a simply supported beam, are shown in Figure 4.14
where the first eigenmode corresponds to the lowest value of the eigenfrequency.
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7%\/ \/;}7 Third bending mode

Figure 4.14 Eigenmodes for simply supported beam.

Normally, when a beam is subjected to a dynamic load, the frequency will not
coincide with the eigenfrequencies and therefore the shape of deformation will not be
the same as any of the eigenmodes. However, the dominating shape of deformation is
the first eigenmode but it is influenced by higher modes. SDOF systems have only
one eigenmode and hence there are no influences from higher modes.
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5 Solution of equilibrium equations in dynamic
analysis

The equations of motion derived in Section 4.2.2.1 to 4.2.2.4 can mathematically be
solved by analytical procedures. However, these standard procedures, proposed for
solving general systems of differential equations, can be very expensive since heavy
equations and calculation are required. Therefore the use of more effective methods is
motivated even though they give approximate results.

In this report two solution procedures are used where both are special cases of the
Newmark method. The Newmark method is a direct integration solution method
where the equations of motion are integrated using a numerical step-by-step
procedure. By the term “direct” it is meant that no transformation of the equations into
a different form is carried out before the numerical integration.

For a large structure where it is hard to find a solution that holds for the entire region
the region is divided into smaller parts, so-called finite elements, for which the
approximated solution is carried out over each element. Even though the searched
variable is varying in a nonlinear manner over the entire region it may be a fair
approximation to assume that the variable varies linearly over each element.

The stability of the Newmark method depends on the parameters a and J, see
Section 5.1. The so called central difference method is, according to Bathe (1996), a
special case of Newmark. with a=0 and 6=0.5. The central difference method is a
conditionally stable method meaning that the time step increment 47 must be smaller
than a critical value of the time increment, A4¢.,, in order to generate a stable solution.
If the time step increment is larger than A¢., the solution is unstable.

The differential equation of motion for a damped body subjected to an external
dynamic load is the most general form of the equation of motion. For single degree of
freedom systems the equation of motion is shown in Equation (4.31). In order to
facilitate when using finite elements the differential equation can be written in matrix
and vector form.

MU+CU+R=P (5.1)

M, C and R are the notations for the matrices of mass, damping and internal force

respectively. P is the vector of externally applied loads and U, U and U are the
displacement, velocity and acceleration vectors respectively. When analysing a mass-
spring system with only one degree of freedom only one element is used. In the
following the displacement, velocity and acceleration vectors at time 0, denoted as

‘U, °U and °U, respectively, are assumed to be known.
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5.1 The Newmark method

In the Newmark method it is necessary to triangularize the stiffness matrix, see
Bathe (1996). Only the case of linear elastic behaviour is discussed here, since other
materials may give rather complex stiffness matrices to triangularize, however, the
principle is the same.

In the Newmark method the acceleration and displacement at time ¢#+4¢ are assumed
to be:

=0 + (- 6) U + 57 U] (5.2)
s = U+ UA +(L - a ) U+ ] (5.3)

where a and ¢ are parameters that can be determined to obtain integration accuracy
and stability. When setting 0=0.25 and 0=0.5 in the Newmark method you get,
according to Bathe (1996) the constant-average-acceleration method (or trapezoidal
rule), illustrated in Figure 5.1.

4 t+ At

Figure 5.1  Newmark method with a =0.25 and 0 =0.5.
In case of linear elastic material the internal force at time #+4¢ can be written as:
AR =K"MU (54
where K is the stiffness matrix.
By using Equation (5.4) the equation of motion in Equation (5.1) can be expressed as:
MU+CU+KU =P (5.5)
The equation of motion at time ¢+A4¢ is:
MU +C* U +K U= P (5.6)

By rearranging the terms in Equation (5.3) the acceleration at time #+4¢ can be
expressed as:

L () Lo (5.7)
alt alt 2a

t+0t U —
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By substituting Equation (5.7) into Equation (5.2) the expression for the velocity at
time 7+A4¢ are found. The relations for the acceleration and velocity at time ¢+4¢ are
used in the equation of motion (see Equation (5.6)) in order to solve for the
displacement at time ¢+A4tz. The complete algorithm for the Newmark method,
according to Bathe (1996) is given in Table 5.1 below.

Table 5.1 Algorithm for Newmark method when having linear elastic behaviour,
according to Bathe (1996).

A. Initial calculations:
a. Form stiffness matrix K, mass matrix M and damping matrix C.
b. [Initialize “U, °U and °U.

c. Select time step At and parameters @ and O to calculate integration

constants:
J2=0.50 a =0.25(0.5+9)>
 ai? Yoal > alt Y
o N[O
614:;_1 a5:7(5—2) aﬁzAt(l—é) a7:5At

d. Form effective stiffness matrix K .

K=K +a,M +a,C

B.  For each time step:

a. Calculate effective loads at time ¢ + Az .

A p=rtAp +M(a0’U +a,'U +a3’U)+C(a1’U +a,'U +a5’U)
b. Solve for displacements at time ¢ + A¢.

RHvy=+5p
c. Calculate accelerations and velocities at time ¢ + Az.

t+At]'j - aO(HAtU—tU)—aztﬁ _a3tl'j

t+AtU=tU+a6tU+a7[+AtU

32 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14




5.2 The central difference method

When a=0 and 0=0.5 are chosen the central difference method is obtained, according
to Bathe (1996). In the central difference method it is assumed that the acceleration
for time ¢ can be written as:

IU ZALtz(z—AzU_ZtU_FHAtU) (58)

The velocity expression is written as:

tU :%At(_t—AtU_i_HAtU) (59)

The displacement at time ¢+A4¢ is obtained by considering the equation of motion see
Equation (5.1) at time ¢, i.e.:

M'U+C'U+'R='P (5.10)
Since the equations are set up in a known state it is an explicit method.
By using Equations (5.8) and (5.9) Equation (5.10) can be written as:

1 1 2 1 1 )
—M+—C |"™U=P-'R+—M'U-|—M-—C|[™U 5.11
(At2 2A¢ j A [Aﬁ 2A¢ J (5-11)

The displacement at time /+4¢ can now be solved but the solving algorithm is slightly
different for different material responses.

In the very beginning of the calculations “U, U and °U are initialized but also the

value of U is required in order to calculate " U (see Equation(5.11)). The
displacement at time 0-At can be expresses by means of displacement, velocity and
acceleration at time 0. For sufficiently small A¢ the change of displacement during
the time At is:

2
"YU - A0 S (5.12)

In order to use less storage space and less processing time the consistent mass matrix
can be reduced to one with a more manageable size and structure. The preferable
structure is a diagonal matrix as shown in Equation (5.13), called a lumped (or
effective) mass matrix.

M, 0 . 0
0 M, . 0

M = (5.13)
0 0 . M

n
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Different methods can be used to transform the consistent mass matrix and obtain a
diagonal matrix, one of them is HRZ lumping. However this is not discussed here but

further information can be found in KTH (2006).

5.2.1 Linear elastic material

A material response curve linear elastic material can be seen in Figure 5.2.

v =<

umax
Figure 5.2 Material response curve for linear elastic material.
In case of linear elastic material the internal force at time ¢ can be written as:
'R=K'U
where K is the stiffness matrix see also Section 3.1.1.
Substituting Equation (5.14) into Equation (5.11) gives:

1 1 2

—M+—C["™U="P{K--——5M U~ LZM—LC My
Y; 20t Y, At 20t

Equation (5.15) can be written as:

MHA:U:tl")
Where
V = %M + LC
JAYS 20¢
and

‘P='P- K—%M ‘U- LZM—LC U
At At 20

The displacement at time ¢+4¢ is calculated by use of Equation (5.16) as:

t+AtU :M—ltf,

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

34 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



The time increment A¢f must be smaller than a critical value of the time increment, A¢..,,
which can be calculated from the mass and stiffness properties of the complete
element assemblage. For linear problems, this critical time step 4z, is:

2
A =2
= (5.20)

where wmax 1s the maximum eigenfrequency, bounded by the maximum frequency of
the individual finite elements.

Since M does not varies in time, for linear elastic material (see Equation (5.17)), it is
calculated only in the initial stage of the analysis together with the stiffness matrix K,
mass matrix M and damping matrix C (if not neglected). The values of the
displacement, velocity and acceleration at time 0, noted U, °U and °U
respectively, are also initialized in the initial stage and after selecting time step size

the displacement at time -A¢ are calculated by means of Equation (5.12). Since P
varies in time it has to be calculated for each time step in the analysis and for each
time the displacement is calculated by means of Equation (5.19).

The complete algorithm, according to Bathe (1996), for the central difference method
when having a linear elastic material is given in Table 5.2.
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Table 5.2 Algorithm for central difference method when having linear elastic
behaviour according to Bathe (1996).

A. Initial calculations:
a. Form stiffness matrix K, mass matrix M and damping matrix C.
b. Initialize U, *U and °U.
c. Select time step At (At <At¢,).

2
d. Calculate *U="U-A"U +%0 U

e. Form effective mass matrix M.

M = LZM +LC
At 2A¢

B. For each time step:

a. Calculate effective loads at time ¢.

‘P='P —(K —%th U —(LZM —Lcj"” U
AY; AY; 21t

b. Solve for displacements at time ¢ + Az .
M U=P

c. Ifrequired evaluate accelerations and velocities at time ¢.

tU — L(r—m U _21 U+1+AtU)

tU — _(_t—AtU+t+AtU)
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5.2.2 Ideal plastic material
A material response curve for ideal plastic material can be seen in Figure 5.3.

rt

m

u
>

Figure 5.3  Material response curve for ideal plastic material.

The internal force R equals to the maximum value R, if the external load is higher
than the maximum value of the internal force or if the displacement is larger than
zero. If the external load is lower than the maximum value of the internal force and
there are no displacements the internal force will be equal to the external load. (See
also Section 3.1.2).

‘R=R,, when ‘P2R, or ‘UZ0 (5.21)
‘R='P when 'P<R, ifalso ‘U=0 '

where R,, is the maximum value of the internal force and ‘P is the external load

matrix at time ¢.

The equation of motion in Equation (5.1) at time ¢ is then:

MU+C'U+R, =P when ‘P>2R, or ‘Uz0

.. ) . (5.22)
MU+C'U=0 when ‘P<R, ifalso 'U=0
Equation (5.11) can in case of ideal plastic material written as:
1 1 2 1 1 -
—M+—C|[™U="P'R+——-M'U~-|—M-—C|™U (523
(Atz 20t j At? (Atz 20t j (5-23)
Equation (5.23) can be written as:
MY U="P (5.24)
where
~ 1 1
M=—M+—C (5.25)
At 2A0¢
and
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. 2 1 1 _
’P:’P—’R+FM’U—(FM—2—NCJ’ U (5.26)

The displacement at time 7+4¢ is calculated by use of Equation (5.24).
AT = M—l t 13 (5.27)

In Equations (5.26) it is seen that as long as the external load is lower than the
maximum value of the internal force and the displacement and acceleration for time ¢

and 7-At respectively is zero there will be no motion since ‘P becomes zero giving
that "~ U, calculated as in Equation (5.27), becomes zero.

Since M does not varies in time for ideal plastic material, see Equation (5.25), it is
calculated only in the initial stage of the analysis together with the stiffness matrix K,
mass matrix M and damping matrix C (if not neglected). The values of the

displacement, velocity and acceleration at time =0, denoted ‘U, °U and °U
respectively, are also initialized in the initial stage and after selecting time step size
the displacement at time -A¢ are calculated by means of Equation (5.27). Since R
depends on the size of the load and the displacement it must be calculated for each

time step, see Equation (5.21). Also P varies in time and has to be calculated for each
time step in the analysis, see Equation (5.26) and the displacement at time ¢+A4¢ is
calculated by means of Equation (5.27).

The complete algorithm for the central difference method when having an ideal
plastic material is given in Table 5.3.
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Table 5.3 Algorithm for central difference method when having ideal plastic

behaviour.

A. Initial calculations:
a. Form mass matrix M and damping matrix C.
b. Initialize U, *U and °U.
c. Select time step At (At <At¢,).

2
d. Calculate *U="U-A"U +%0 U

e. Form effective mass matrix M.

M = LZM +LC
At 2A¢

B. For each time step:

a. Determine the matrix of internal force for time ¢.

‘R=R, when ‘P2R, or ‘UZ0
'R='P when 'P<R, ifalso ‘'U=0

b. Calculate effective loads at time ¢.

‘P='P-'R +iszU —(%M —Lcjf‘” U
At At 20

c. Solve for displacements at time ¢ + Az .

MHA;U:tl")

d. Ifrequired evaluate accelerations and velocities at time ¢.

tU — L(z—Az U _2tU+t+AtU)

tU — _(_l—AtU+t+AlU)
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6 Transformation from deformable body to SDOF
system

In order to simplify analyses of deformable bodies, which have an infinite number of
degrees of freedom, the system can be discretized to a system with a finite number of
elements and the degrees of freedom belonging to them. Beams and plates have, in
practice, a limited possibility to move. This makes it possible to transform the
structures to single degree of freedom systems here denoted as SDOF systems, see
Figure 6.1. This simplification introduces errors into the analyses. For example the
user assumes a shape of deflection valid for the SDOF system, in this report the shape
of deformation corresponding to the first eigenmode is assumed, while the shape of
deformation for beams are influenced by higher modes, see Section 4.2.3.

| g(x,1) ‘

| | e e
7 M,L,E1C,0, m \

Figure 6.1  Transformation from deformable body to SDOF system.

The properties of the deformable body will be transformed to the SDOF system by
assigning equivalent quantities for the mass, the internal force and the load applied to
a system point. The SDOF system is assumed to have the same function describing
the deflection in the system point. Since, in most cases, the maximum displacement is
to be calculated the location of the system point in the deformable body is chosen to
coincide with the point that achieves the larges displacement but it can be an arbitrary
point along the beam. One condition, for the transformation of the properties to be
possible, is that a uniform change of the deformation is assumed. That is if the
displacement in one point of the beam increases the displacements in all the other
points will increase proportional to this as illustrated in Figure 6.2. Another way to
express this is to say that the principle shape of deformation is assumed to be the
same, and hence be known at all times.
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u(x,ty) =ald(x,t) —
< Shape of

deformation at

System point time 7 =1,

Shape of
deformation at

u(x,t,) —u(x,t,) =(a - Du(x,z,) time ¢ =1,

Figure 6.2  Shape of deformation at time t, and t,.

The transformation of the properties for the real structure to the equivalent properties
for the SDOF system is made by use of transformation factors. The equivalent
quantities and the transformation factors are derived from the condition that the
energy exerted by the equivalent SDOF system must be equal to the energy exerted by
the beam, when exposed to a certain load. Hence, the transformation factors will
depend on the applied load and the deflection shape of the beam.

6.1 Differential equation for SDOF system
The differential equation for the SDOF system in Figure 6.1 is:
M +Cu, +R, =P(t) (6.1)

where M, is the equivalent mass, R, is the equivalent internal force and P.(?) is the
equivalent load applied which is varying with time. The damping, C,, of the system is
here chosen to be neglected since it has little influence on the value of the maximum
displacement which is of interest. Neglecting the influences of damping also involves
calculations that are easier to handle and gives results on the safe side because the
capacity of the system is underestimated. When neglecting the damping the
differential equation for the SDOF system in Equation (6.1) can be rewritten as:

M +R, =F,(1) (6.2)

The equivalent quantities for the mass, the internal force and the load can be
expressed by means of transformation factors.

K, Mi +K.R=K,P(t) (6.3)

Equation (6.2) and (6.3) gives the definition of the transformation factors.
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K = (6.4)
— Re
K= (6.5)
AV)
= p (6.6)

In order to simplify the expression of the differential equation further two new
transformation factors are defined.

K

K,y = ﬁ (6.7)
K

Kip = K_K (6.8)

P

By use of Equations (6.3), (6.7) and (6.8) the differential equation for the SDOF
system can be expressed as:

Ky pMii, + K, R = P(t) (6.9)

6.2 Transformation factors for beams

6.2.1 Transformation factor for the mass

The transformation factor for the mass can be derived from the condition that the
equivalent mass M., following the oscillation of the system point u,, shall generate the
same amount of kinetic energy as the real system.

The kinetic energy generated by the equivalent mass in the SDOF system is:

2
Mevs

wrPor = (6.10)
2
where v, = % is the velocity of the system point in vertical direction.
t
The kinetic energy for the beam is:
x=L V2
beam _
wpean = XL)? PAdx (6.11)
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where X coordinate with origin in one end of the beam [m]

A cross-section area [mz]
yo, density [kg/ m’]
v=v(x)= i—L; velocity of arbitrary point in vertical direction [m/s]

Due to the statement above Equation (6.10) shall be equal to Equation (6.11), i.e.:

MC’VSZ
2

x=L 2 x=L 2
v 1%
= ITpAdx o M, = [ = padx (6.12)
=0

x=0 "g
The change of the displacement in an arbitrary point in the beam can be expressed as:
Au =u(x,t)) —u(x,t) = au(x,t) —u(x,t,) = (a —Du(x,t) (6.13)

where u(x,t;) is the displacement at time ¢=¢,; at the distance x from one end of the
beam and u(x,?,) is the displacement at the same position in the longitudinal direction
of the beam at time #=¢,. Due to the constant shape of the beam deflection u(x,?,) can
be said to be a factor o times larger than u(x,¢;), see Figure 6.2.

This is also valid for the system point where the change of deformation when time
goes from #; to ¢, thus can be expressed as, see Figure 6.2:

Du, =u (t))—u (t,)=au(t,)—u(t)=(@—-Du.t) (6.14)

Since the assumption of uniform deformation is valid for all times, ¢z, Equations (6.13)
and (6.14) can be written in a more general form:

Au = (a —Du(x,t) (6.15)
DAu, =(a-Du, (1) (6.16)

The velocity of an arbitrary point in vertical direction and the velocity of the system
point in the same direction can be expressed as v=Au/At and vi=Auy/At respectively.
Using these expressions together with Equation (6.15) and (6.16), Equation (6.12) can
be written as:

I (@ =Du(x,0)) A :xJ‘L u(x,t)’ LGRS

6.17
(@-vuo) 77 L u o (6.17)

If the definition of the transformation factor x;, (see Equation (6.4)) is used and the
beam is assumed to have a uniformly distributed mass the expression for the
transformation factor for the mass can be written as:
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x=L 2
—j uen)) pax =1 [ | 12D 4 (6.18)
u (t) L2 u ()
i.e. the transformation factor for the mass is depending on the assumed shape of the
deformation.

6.2.2 Transformation factor for the load

The transformation factor for the load can be derived from the condition that the
equivalent load, following the oscillation of the system point, shall generate the same
amount of work as the total real load does in the real MDOF system.

The work generated by the equivalent load in the SDOF system during a time
increment A¢ is:

M%7 = P, (0u, (1) (6.19)

The corresponding work for the beam is:

x=L
Moen = j q(x, Ou(x,t)dx (6.20)
x=0
where X coordinate with origin at one end of the beam [m]
x=L
Jq(x, t)dx = P(t) total load on the beam [N]
x=0

Due to the statement above Equation (6.19) shall be equal to Equation (6.20)

x=L

P(u, ()= [qx,u(xndx = P(z)-j g(n0=

x=0

u(x, t)

(6.21)

The transformation factor for the load, see Equation (6.6), can now be written as:

XJ.Lu(x D q(x,t)dx

K, =20 ”j( ) (6.22)

Iq(x, t)dx

x=0

Also the transformation factor for the external load is depending on the assumed
shape of deformation. It is further depending on the shape of the load.
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6.2.3 Transformation factor for internal force

The transformation factor for the internal force, following the oscillation of the system
point, can be derived from the condition that the equivalent internal force shall
perform a work that is equivalent to the work of deformation for the beam.

The internal force and the work it performs are depending on the behaviour of the
material. For the SDOF system this is shown in Figure 6.3, where the shaded areas
represent the total internal work for each material. R, is the maximum value of the
equivalent internal force. In case of linear elastic material the maximum internal force
is corresponding to R, =K. U max-

Re A Re Ar R
R me

me

Rme _____________ [}
’ A Ke

B
N

:

:________________

:____

23
Q
N

Z’[s,max us us S, s,pl
a) b) )

Figure 6.3  Internal work for SDOF system for a) Linear elastic material b) ideal
plastic material c) trilinear material.

The internal force for the SDOF system can be expressed for the three different types
of spring relations shown in Figure 6.3.

Linear elastic behaviour:

R, =K, u, (6.23)
where K, is the stiffness of the linear spring in the SDOF system.
Ideal plastic behaviour:

R, =R, for u(f)z0 (6.24)

Because of the ideal plastic behaviour there will be no displacement until the load,
P.(t), has reached the value of the maximal internal force, R,..

Trilinear behaviour:

K,u, for u,<u,
—_ ! —
R, =<Ku, , +K (u ~u_,) for wu,,<u <u,, (6.25)
R for u,, <u

me
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6.2.3.1 Linear elastic material

Following Samuelsson and Wiberg (1999) the work of deformation for the beam
made of linear elastic material can be derived by studying a lamella of length Ax and
the sectional forces, N, and deformations, An, belonging to it, see Figure 6.4.

Ax

Figure 6.4  Segment, with length Ax, of the beam.

The constitutive relationship between the sectional forces N and the deformations
An are:

. EA O 0 N An

=—|0 ny 0[An N=|V |, An=|As ,
A i (6.26)

0 0 EI M Am
where E modulus of elasticity [Pa]
A cross-section area [mz]

E
= shear modulus [Pa]
2(1+0)

U Poisson’s ratio [-]
Y constant, shape factor [-]
1 moment of inertia [m’]

The meanings of the deformations 4n, At and Am are shown in Figure 6.5.
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Figure 6.5  Deformation of beam lamella.

The constant f can be derived from the statement that the work of deformation due to
shear force shall be equal to the work of deformation due to shear stress.

Vy = VV_'B = Zj.hr(z)y(z)b(z)dz (6.27)
G4 '
where y= od average value of shear angle [-]
r shear stress [Pa]
b width of the cross-section [m]
h height of the cross-section [m]
y= r shear angle [-]
G g

For a certain time in the loading the sectional forces will increase from N to N +dN
and the deformations will increase from An to An + dAn . The change of the work of
deformation is defined as the change of the work during the change of deformation
dAn .

din; = NdAn + VdAt + MdAm (6.28)
where index s and i stands for segment and internal respectively.

When using Hooke’s law Equation (6.28) can be rewritten

an® = E4 n ann + G4 a cane + ZL o citm = N'dan (6.29)
Ax J/iNs Ax

In order to get the total work of deformation of the segment, Equation (6.29) will be
integrated over the deformation An .
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An At Am
n = | E4 pndbn+ | A prane+ [ EL pm dtvm =
An=0 Ax Ar=0 ﬁAX Am=0 Ax
o 1 (6.30)
=| EA(An)* +— (At)? + EI(Am)* | —
B 20x

Once again using Hooke’s law and integrating the work of deformation for the
segment over the length, L, of the beam will give the total work of deformation for the
beam.

x=L s x=L 2 2
beam — rli — N ﬁV " 1
Moo = Ide_ j TRy + M (x)u"(x) de (6.31)

x=0 x=0

If the influences from the normal- and shear forces are neglected the total work of
deformation for the beam can be written as:

s ;
Feam =2 j M (x)u"(x)dx (6.32)
x=0

Equilibrium position
a) M,
Position when the force in the spring is
b) M, R, larger than in equilibrium position
3

Figure 6.6  Mass in a) equilibrium position and b) moved ¢ from equilibrium
position.

Study the undamped SDOF system in Figure 6.6. The displacement ¢ causes an
internal work for the SDOF system which by use of Equation (6.23) can be written as:

E=u E=uy 2 2

’ : K K
I—IiSDOF: J‘Redgzj'Ke{df: Uy =K u,
£=0 £=0

> « (6.33)
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As stated in Section 6.2.3 the total internal work of the SDOF system shall be equal to
the total work of deformation of the beam, meaning that Equation (6.32) shall be
equal to Equation (6.33).

KKMSZ_lx
A )

I M (x)u" (x)dx (6.34)

The stiffness K of the beam is depending on the shape of the load and is determined
by:

x=

L
q(x,t)dx = Ku, (6.35)
0

x=

The definition of stiffness K of the beam according to Equation (6.35) together with
Equation (6.34) gives the final expression of the transformation factor for the internal
force when having a linear elastic material.

x=L

- j M (x)u"(x)dx
1 " 1 x=0
K =y [ MOou" (de == (6.36)
s x=0 s J‘q(x, t)dx
x=0

For high beams it might be necessary to include the influences from the shear forces
to get adequate results, see Section 6.2.4 for further discussion.

6.2.3.2 Ideal plastic material

As when deriving the work of deformation for the beam made of linear elastic
material a lamella of the ideal plastic beam with length 4x is studied. For ideal plastic
material the influence of the normal- and the shear force is neglected in the following
derivation of the transformation factor. For high beams the influence of shear will
cause the transformation factor to change noticeable.

Consider a situation when the moment, M, will increase to M+dM and the
deformation of the segment, Am will increase to Am+dAm. The increase of the work
of deformation is defined as the work achieved during the deformation dAm.

dn; = Mdhm (6.37)
where the moment M is constant within the segment.

In order to obtain the total work of deformation for the segment Equation (6.37) will
be integrated over the deformation Am.
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Am Am
= j MdAm = M jdAm = MAm (6.38)

Integration of the work of deformation for the segment over the length, L, of the beam
will give the total work of deformation for the beam.

[ ben = J—dx jM—dX— J‘LMu"(x)dx (6.39)
=0

The internal work for the SDOF system, when the spring has ideal plastic behaviour,
can be derived in the same way as for linear elastic behaviour (see Section 6.2.3.1).
For an ideal plastic material the internal force is constantly equal to R,. if the
displacement £ exists (see Equation (6.24)).

=uyg

R .[R dé =R, u, =K.Ru, (6.40)
£20

As stated in Section 6.2.3 the total internal work of the SDOF system shall be equal to

the total work of deformation of the beam, that is Equation (6.39) shall be equal to
Equation (6.40).

x=L

KeRu, = [ Mu"(x)dx (6.41)

x=0

This gives the final expression of the transformation factor for the internal force when
having an ideal plastic material.

17,
K :Kl OMu (x)dx (6.42)

The maximum value of the internal force is equal to the external load (since the
external load shall generate the same work of deformation as the internal resisting
force).

x=L
R, = [q(x,t)dx (6.43)
x=0
If Equation (6.43) is inserted in Equation (6.42) the transformation factor for the

internal resisting force in case of ideal plastic behaviour is expressed as:

x=L

J.Mu"(x)dx
K = j Mu"(x)dx —u—’;&— (6.44)
ms x=0 s .[q(x’ t)d.x
x=0
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6.2.3.3 Trilinear response material

The trilinear response curve in Figure 6.3.c can represent the response of a reinforced
concrete beam subjected to pure bending, see Chapter 12 for the application on
concrete material.

The derivation of the transformation factor for internal force and trilinear material is
rather complex. Due to the difficulties to derive the expression of the transformation
factor for a multilinear material it is here assumed to be convenient to use the
transformation factor for linear elastic material in the analyses of trilinear material.
The choice of transformation factor for the internal force for trilinear material is
further discussed in Chapter 8.

6.2.4 Tabled transformation factors for beams

The values of the transformation factors for mass, load and internal force for the
beams shown in Figure 6.7 are calculated in Appendix A to B and are shown in Table
6.1. The system point is placed in the middle of the beam for all cases except of
cantilever beams, when it is placed in the free end of the beam. When having linear
elastic material the natural shape of deformation, meaning the shape of deformation
according to theory of elasticity for a beam subjected to a static load, is assumed. In
case of ideal plastic material the mechanisms according to theory of plastic hinges is
assumed (see examples in Appendix B).

5 3 ,9,
| L | L
1 1
Case (1.1) Case (1.2)
v v
L | L |
1 1
Case (2.1) Case (2.2)
b v |
L L |
1
Case (3.1) Case (3.2)

Figure 6.7  The six different cases.
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Table 6.1 Transformation factors for beams shown in Figure 6.7

Material | «, Ky Ky Kyp K cp

Elastic 1.0 0.486 1.0 0.486 1.0
Case (1.1)

Plastic 1.0 1/3 1.0 1/3 1.0

Elastic 0.640 0.504 0.640 0.787 1.0
Case (1.2)

Plastic 0.5 1/3 0.5 2/3 1.0

Elastic 1.0 0.371 1.0 0.371 1.0
Case (2.1)

Plastic 1.0 1/3 1.0 1/3 1.0

Elastic 0.533 0.406 0.533 0.762 1.0
Case (2.2)

Plastic 0.5 1/3 0.5 2/3 1.0

Elastic 1.0 0.236 1.0 0.236 1.0
Case (3.1)

Plastic 1.0 1/3 1.0 1/3 1.0

Elastic 0.400 0.257 0.400 0.642 1.0
Case (3.2)

Plastic 0.5 1/3 0.5 2/3 1.0

Granstrom (1958) and Balasz (1997) have used a different expression for the
transformation factor for the internal force, the relation with the transformation factor
used here are shown in Appendix C.

When taking the influences from shear into account the transformation factor depends
also on the shear modulus and consequently the Poisson's ratio v. In case of a fixed
concrete beam (v=0.15) with linear elastic material, subjected to a uniformly
distributed load and the length of the beam is ten times the height (L=10h) the
contribution from the shear to the transformation factor for internal force is 0.01
according to Wendt (2006). In Table 6.1 it is seen that in this case, when the influence
of shear is not taken to account, the transformation factor for the internal force is
0.533. The transformation factor for the internal force is thus 0.533+0.01=0.543 when
influences from shear are included. When the length of the beam is five times the
height (L=54) the contribution from the shear to the transformation factor for internal
force is 0.06 according to Wendt (2006) and the value of the transformation factor for
internal force is 0.533+0.06=0.593 when influences of shear are taken into account.

52 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



7 Comparison of SDOF and FE analyses for beams

In order to verify the results of the analysis where the beam is represented by an
SDOF system, a comparison to the results in a finite element analysis (FE analysis) is
made. The FE analysis is here assumed to give results accurate enough to be equal to
the real behaviour of the beam.

Due to limitations in the SDOF analysis the influences of higher order modes are not
taken into account while it is in the FE analysis. When analysing a beam with trilinear
material response a difference between the SDOF and FE results is expected since the
transformation factors for linear elastic material is used in this case as discussed in
Section 4.2.3.

7.1 Typical examples

Comparisons are made for four different cases; simply supported beam subjected to
concentrated and uniformly distributed load respectively, and beam with fixed ends
subjected to concentrated and uniformly distributed load respectively. The different
cases are shown in Figure 7.1.

Each case will be analysed for linear elastic (1 analysis), ideal plastic (1 analysis) and
trilinear material (3 analyses) as described in Chapter 6. Further each case with each
material model will be analysed as a SDOF system as well as a MDOF system. This
summons up in 4 [({1+1+3)[2 =40 analyses. The MDOF system is analysed by use

of the commercial code ADINA (2004).

5 % %
| L=25m | L=25m
1 1
Case (1.1) Case (1.2)
v 1 v
L=25m | | L=25m |
1 1 1
Case (2.1) Case (2.2)

Figure 7.1  The four different cases.

The choice of material properties and geometry of the beam is based on the
requirements in the Swedish shelter regulations, Raddningsverket (2003), also
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discussed in Section 12.3. The geometry of the beam will be the same for all cases
with a length of 2.5 meters and a cross-section as shown in Figure 7.2.

h b=1.0m
h=0.35m

Figure 7.2 The cross-section of the beams used in the typical examples.

It is necessary to use material properties and loads that agree in both FE and SDOF
analyses in order to facilitate the comparison of the results from the different analyses.

The load applied is triangular in time, as shown in Figure 7.3. Where the total time for
the load is 1.0 ms and the maximum value of the load ( B), also called the peak value

of the load, is chosen to occur when 10% of the total time for the load has elapsed. In
reality the peak load occurs at time 0.0 ms but since this can cause numerical
problems the approximation described above is used.

4 load [kN]

av

[
>

0.1 1 time [ms]

Figure 7.3 Time function of the load.

The peak value of the load differs in the analyses. When having a trilinear material
three different analyses are made for each typical example. One for a load small
enough to stay in the elastic range, one for a load large enough to leave the elastic
range but still small enough not to reach the plastic range and one with a load large
enough to reach the plastic range, see Figure 7.4.
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Figure 7.4  The different ranges for a trilinear material.

In case of trilinear material the maximum load value when elastic behaviour is wanted
is chose to be P;=0.8P,,, when elastoplastic behaviour is wanted P;=0.8(R,,-P.,) and
for plastic behaviour P,=2R,. Table 7.1 shows the values of the peak load for the
different analyses. In case of uniformly distributed load the peak value of the load is
qi =P 1/L.

Table 7.1 Peak values for the loads applied to the beams.

Case (1.1) Case(1.2) Case (2.1) Case (2.2)
Material Peak load, Peak load, Peak load, Peak load,
B kN] | A[N] | A[KN] | B [kN]
Linear elastic 132 268 120 184
Ideal plastic 4810 9640 4220 8560
Elastic range 132 268 120 184
. Elastoplastic 1954 3920 1715 3467
Trilinear
range
Plastic range 4810 9640 4220 8560

In the SDOF analyses the total time for the analysis is set to 30 ms and 10000 time
steps are used which gives a constant time increment, A¢, equal to 0.003 ms. This time
step is also used in case of elastic material in the FE analyses. In case of ideal plastic
and trilinear material the time step is decreased since otherwise convergence
problems will occur in ADINA (2004), see Section 7.1.2. In these analyses a time step
increment of 0.0015 ms are used. The time increment of 0.003 ms in the SDOF
analyses for ideal plastic and trilinear material remains.
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When analysing a beam as a SDOF system with trilinear behaviour (for example a
reinforced concrete beam) the material properties are often given as the relation
between load and displacement while in the FE analyses the stress-stain relation is
required. How to obtain an approximate stress-strain relation from the load-
displacement curve for the beams in the typical examples are shown in Appendix D.
The corresponding notations when using a stress-strain relation and a load-
displacement relation are shown in Figure 7.5.

pl pl

cr cr

Figure 7.5  Notations for material properties for load-displacement relation and
stress-strain relation respectively.

It shall be observed that the modelled beams in ADINA (2004) will not vibrate as a
reinforced concrete beam since plastic deformations occur also in the elastoplastic
range while a reinforced concrete beam have elastic behaviour in both elastic and
elastoplastic range, see Section 3.1.3. The solution of the SDOF analyses are here
forced to have the same behaviour meaning that plastic deformations will occur as fast
as the elastoplastic range is entered. However, this will not influence the value of the
maximum deflection and are therefore application able on analyses of reinforced
concrete beams as long as the maximum value of the displacement is to be found.

7.1.1 SDOF analysis

Analyses of the SDOF system are made in OCTAVE using MATLAB programming
language, developed for this project that computes the displacement for each time step
for the three different types of material responses. The computations are made by
using the explicit central differential method, see Section 5.2. The material data
needed to perform the calculations for the different materials are calculated in
Appendix D and shown in Table 7.2 where the meaning of the notations can be seen
in Figure 7.5.
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Table 7.2 Material properties for SDOF analysis.

Material P, [kN] | P,[kN]| K'/K | o, [MPa] | E [GPa]
Linear elastic - - - - 38.6
Ideal plastic - - - 4.45 -
Case (1.1) 53.8 218.2
Case (1.2) 107.7 436.4
Trilinear 0.0774 | - 38.6
Case (2.1) 107.7 436.4
Case (2.2) 161.5 872.9

7.1.2 FE model

The program used for the FE analyses is the commercial code ADINA (2004) where
the solution method is Newmark with 0=0.5 and o=0.25. This method is also called
the trapezoid method or constant-average-acceleration method, see Section 5.1.

Different FE models are used for the different material responses. Due to limitations
in the ADINA (2004) program the elements used to model the beam will not be the
same for all cases. In the cases of elastic and ideal plastic material the beam is
modelled with 2-node beam elements as shown in Figure 7.6. When having elastic
material the beam is divided into twenty equally sized elements (see Appendix E).

Figure 7.6 Beam element with constant, rectangular cross-section.

In case of an ideal plastic material the beam is divided into parts modelled with ideal
plastic material and parts with linear elastic material in order to imitate the assumed
mechanisms. The elements with ideal plastic material are located where the assumed
plastic hinges are located, see Figure 3.13. The linear elastic part of the beam is
divided into 48 elements and the total number of ideal plastic elements differs due to
the different numbers of plastic hinges for different beams. In case of simply
supported beams the total length of the part modelled with linear elastic material is
2.45 m and in case of a beam fixed in both ends the total length of the elastic part is
2.4 m. For all beams the length of the ideal plastic elements are 2.5 cm. Constraints
are used in the nodes belonging to the elastic part of the beam in order to have no
curvature. The rotation of these nodes is constrained to be the same as in the node in
between the element with plastic material in the middle, in case of simply supported
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beam, and at the supports, in case of fixed beam, and the last elastic element. This is
done in order to imitate the assumed mechanisms even more. The beams in the ideal
plastic analyses are shown in Figure 7.7 and Figure 7.8.

24 linear elastic elements
e : Total length 1.225 m

2 ideal plastic elements
with length 2.5 cm each

Figure 7.7  Modelled beam (simply supported) for ideal plastic material.

24 linear elastic elements
Total length 1.2 m

2\; 1 ideal plastic 2 ideal plastic 1 ideal plastic
element with element with

elements with
length 2.5 cm length 2.5 cm each length 2.5 cm

Figure 7.8  Modelled beam (fixed in both ends) for ideal plastic material.

When having a trilinear material (modelled with multilinear material) the beam cannot
be modelled with beam elements in ADINA (2004). Instead 2-node isobeam elements
are used. The beam is divided in three hundred parts in the longitudinal direction in
case of uniformly distributed loads. In case of concentrated loads an odd number of
elements will be used in order to avoid an unrealistic deformation in the midzone. 299
elements are used in these cases (see Appendix E) and the middle element has
trilinear material behaviour while the other elements will have a material response as
shown in Figure 7.9, here called bilinear material behaviour, in order to avoid large
plastic deformations here. The length of the midpoint element is 2.5 cm, see Figure
7.10 and Figure 7.11.

58 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:14



>

™
)

5]

pl

Figure 7.9  Bilinear material behaviour used in all elements except the midpoint
element in case of trilinear material and concentrated load.

149 elements with total length
of 1.2375 m and bilinear
material

1 element with
trilinear material
and length 2.5 cm

Figure 7.10 Modelled beam (simply supported) for trilinear material in case of
concentrated load.

149 linear elastic elements
e : Total length 1.225 m
2 E
\ 1 element with
trilinear material

and length 2.5 cm

Figure 7.11 Modelled beam (fixed in both ends) for trilinear material in case of
concentrated load.

The main difference between beam and isobeam elements is that beam elements have
2 nodes while isobeam eclements can have 2, 3 or 4 nodes where 3- and 4-node
isobeam elements can be used to define curved beams (see Figure 7.12). Even though
there are some calculation differences when using 2-noded isobeam elements instead
of beam elements the results will be very similar. For further information see
ADINA (2004). The material data used to perform the calculations for the different
materials are shown in Table 7.3.
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2-node isobeam -

3-node isobeam

4-node isobeam |2

Figure 7.12  General 3-D isobeam elements. From ADINA (2004).

Table 7.3 Material properties for FE analysis
Material E E' g, g, £, £,
(GPa] | [Gpay | MPal | [MPa] | [%o] [%o]
Linear elastic | 38.6 - - - - -
Ideal plastic 5000 - - 4.45 - -
Trilinear 38.6 2.99 1.65 4.45 0.043 0.98

1) In ADINA (2004) it is not possible to model an ideal plastic material but in order to imitate this
behaviour a bilinear plastic material is used where the modulus of elasticity in the elastic part is
chosen to be large enough to get accurate result. By testing it was found that a suitable value of
the modulus of elasticity was 5000 GPa see Appendix E.

2) The elements in the beam that are not connected to any assumed plastic hinge are modelled with
linear elastic material in order to avoid yielding in these elements.

7.2 Results

7.2.1 Linear elastic material

In the SDOF- and FE analyses with linear elastic material the input shown in Table
7.2 and Table 7.3 were used. The displacement-time relations from SDOF and FE
analyses for linear elastic material are compared in Figure 7.13.
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Figure 7.13 Displacement-time relations from analyses for linear elastic material.

As predicted there are influences from higher modes in the results from the FE
analyses. These are represented by a non smooth character of the curve. When
comparing the FE results for the different cases it can be observed that the higher
modes influence the beams subjected to a concentrated load more than they affect the
results for a beam subjected to a uniformly distributed load.

There is a good agreement between the curves representing the SDOF and FE
solution.

A phase shift between the results from the SDOF and FE analysis can be noticed in
case of concentrated load.

7.2.2 Ideal plastic material

In the SDOF- and FE analyses with ideal plastic material the input shown in Table 7.2
and Table 7.3 were used. The displacement-time relations from SDOF and FE
analyses for ideal plastic material are shown in Figure 7.14.
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Figure 7.14  Displacement-time relations from analyses for ideal plastic material.

The values of the maximum displacement from the SDOF analysis are lower than the
values from the FE analyses but the difference is rather small for all cases and the
SDOF results are acceptable approximations of the FE results. The lower value can be

may be explained by the fact that the same behaviour are not exactly the same in
SDOF and FEM.

7.2.3 Trilinear material

The results from the analyses when having a trilinear material are presented in this
section. Due to the change in behaviour for different loads three different values of
loads are used for each case see Table 7.1. In the SDOF- and FE analyses with
trilinear material the input shown in Table 7.2 and Table 7.3 are used.

7.2.3.1 Elastic range

For a load small enough all points in the beam will remain elastic meaning that the
beam will vibrate about the position of the unloaded beam. Since the only differences
between these analyses and the analyses for linear elastic material is that the beam is
modelled with isobeam elements instead of beam elements and that more elements are
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used (300 or 299 instead of 20) the results will be identical or nearly identical in those
cases see Section 7.2.1. The displacement-time relations from SDOF and FE analyses
for trilinear material, elastic range, are shown in Figure 7.15.
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Figure 7.15  Displacement-time relations from analyses for trilinear material,
elastic range.

The results are very similar to the results achieved in the analysis of linear elastic
material, see Section 7.2.1, but one difference worth attention is that the phase shifts
have increased for all cases. One difference between the two analyses that could be
the reason for this difference is that for the trilinear material isobeam elements are
used while beam elements are used for the linear elastic material. Also the element
mesh differs in the two analyses. In case of linear elastic material 20 elements are
used while 300 or 299 are used in case of trilinear material. With these exceptions the

comments are the same as for the results achieved in the analyses of linear elastic
material.

7.2.3.2 Elastoplastic range

For a load large enough to leave the linear elastic range but still small enough not to
reach the plastic range there will be plastic deformations of the beam leading to
oscillations about a value not identical to the unloaded position. The displacement-

time relations from SDOF and FE analyses for trilinear material, elastoplastic range,
are shown in Figure 7.16.
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Figure 7.16  Displacement-time relations from analyses for trilinear material,
elastoplatic range.

The SDOF analyses overestimate the maximum displacement of the system point for
all cases. A reason for the differences in value of the maximum displacement,
comparing the SDOF with the FE solution, is that the transformation factor for the
linear elastic material is used through the whole analyses instead of using
transformation factors especially derived for this kind of material, see Section 6.2.3.3.
Another reason, probably the most important, is that the relation between the load and
displacement is not exactly the same for the SDOF and FE analyses see Appendix D.

In the FE analyses there is a difference between the maximum displacements in the
first oscillation compared to the maximum displacements in the following oscillations.
This loss in maximal displacement is not represented in the SDOF analysis where all
the oscillations have the same maximal displacement.

7.2.3.3 Plastic range

For a load large enough to reach the plastic range there will be plastic deformations in
the beam, causing the beam to oscillate around a value not identical to the unloaded
position. The displacement-time relations from SDOF and FE analyses for trilinear
material, plastic range, are shown in Figure 7.17.
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Figure 7.17  Displacement-time relations from analyses for trilinear material,
plastic range.

As seen in Figure 7.17 the difference between the SDOF and FE analyses is rather
large for beams subjected to concentrated loads. Even though the FE models of the
beam in case (1.1) and (2.1) are made in order to avoid large and unrealistic midpoint
displacements in the very beginning of the analyses the fast load application probably
influences the FE results more than the SDOF results. In Figure 7.18 where the
standardized deflection along the beam from the FE analysis in case (1.1) and (2.1)
are shown together with the assumed shape of deformation in the SDOF analysis. The
two shapes of deformation (meaning SDOF and FE) are not the same which partly
explains the difference between results from the SDOF and FE analyses in case of
concentrated loads.
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Coordinate [m]
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b)

Figure 7.18 Standardized displacement along the beam in a) case (1.1) and b) case
(2.1) compared to the assumed shape of displacement in the SDOF
analyses.

The standardized shapes of deflection for case (1.2) and (2.2) are shown in
Appendix F.

In case of uniformly distributed loads the results agree more even though unrealistic
deflections appear at the supports in case (2.2). This behaviour can be explained by
the fact that the information is spread with delay inside the beam meaning that in the
very beginning of the loading the zones at the supports reaches high stresses before
the information has been transported to the rest of the beam (further discussed in
Section 12.1). This phenomenon is not taken into account in the SDOF analyses. A
more realistic value of the midpoint deformation can be estimated as shown below.

The deformation along the beam in case (2.2) is shown in Figure 7.19 where an
unrealistic deformation occurring at the supports can be seen. These appear in the
very beginning of the analysis and affects values of the midpoint deflection. A more
realistic value of the displacements at the supports from the FE analysis is shown in
Figure 7.20. In Figure 7.21 the more realistic midpoint displacement is shown
together with the SDOF result and the unrealistic FE result.

Coordinate [m]
0 0,5 1 1,5 2 2,5
| |

Displacement [mm]
wn

|
|
6 \
|
|

Figure 7.19 Displacement along the beam in case (2.2).
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Figure 7.20  Estimated displacement for the beam in case (2.2)
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Figure 7.21 More realistic displacement for the beam in case (2.2) compared to the
SDOF result.
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8 Comments to and discussion about Chapter 7

8.1 Transformation factors for trilinear material

In the analyses made in Chapter 7 the linear elastic transformation factors are used
when analysing SDOF systems with trilinear material since the derivation of the
transformation factor for internal force and trilinear material is rather complex. The
choice of transformation factors in case of trilinear material is discussed here.

Different approximations and simplifications can be used in order to facilitate
dynamic analyses of trilinear materials. Two approximation methods, convenient to
use in many cases according to Norris (1959), is discussed here.

8.1.1 Sudden change of transformation factors

Norris (1959) declares that, even though a sudden change of transformation factors is
unrealistic when analysing an elastoplastic material, it is often assumed to be
convenient to use this approximation for purposes of analysis. This means that it is
assumed to be convenient to use the transformation factor for linear elastic material in
the elastic range and the transformation factor for plastic case in the plastic range.
When this statement is applied on trilinear material also the elastoplastic range has to
be considered.

In the elastoplastic range the transformation factor can be derived in the same way as
in the case of linear elastic and ideal plastic material. However, this is not done here
since the expression will depend on the value of the internal force where there is a
drastic change of material behaviour. In order to avoid these complex expressions it is
assumed to be suitable to use transformation factor for linear elastic materials in the
elastic range, an average value of the elastic and plastic transformation factor in the
elastoplastic range and transformation factor for ideal plastic materials in plastic
range.

el + pl
e =K 2K 2K 8.1)

where 7!, k¥ and ¥’ are the transformation factors in the elastoplastic, elastic and
plastic range respectively.

In case of trilinear material the differential equation in the different ranges is:

In the elastic range
Mii+Ku=P (8.2)
In the elastoplastic range

Mel;i + Keucr + KZ’ (u _ucr) = })e (8.3)
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In the plastic range

Meii + Rme = Pe (84)

By use of transformation factors Equations (8.2) to (8.4) can be written as:

In the elastic range

KelM-- + el — el (85)
wMii+ Ky Ku=k, P

In the elastoplastic range

K M i + P! oo — elpl (8.6)
o Mii+ Ky (Kucr +K'(u ucr))—l(,, P

In the plastic range

k! Mii+k!R, =k!'P (8.7)

or

In the elastic range

Kel M + el — (88)
M+ Ky, Ku = P

In the elastoplastic range

K i+ 5! (Ku, +K'(u=u,,)) = P (89

In the plastic range

kP Mii+k2,R, =P (8.10)

In case of a fixed beam subjected to a uniformly distributed load the transformation

factors in Equations (8.8) and (8.10), shown in Table 6.1 ,are:

Ko, =0.762
ke, =1.0
(8.11)
kb, =2/3
kP, =1.0

and the transformation factors in the elastoplastic range, calculated by means of
Equation (8.1) are:

+
P 0.762 . 0.667 _ 0.714 .

K =1.0

The transformation factor xxp equals 1.0 in all ranges why only the value of the
equivalent mass will change. Since the value of xyp decreases when a new range is
entered it can be compared with taking away or losing mass. This means that when
using this method, where a sudden change of the transformation factors is allowed, the
energy will be drastically decreased when a new range is entered. This is graphically
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shown in Figure 8.1 where the energy of the SDOF system is studied when analysing
the beam in Section 12.4. The total energy used by the SDOF system will be lower
than the total energy applied to the system which is not realistic and will result in
underestimated value of the final displacement.

16
14 A
Total energy applied

12 4 to the system
g J \ Total energy used by
E 10 ] the SDOF system
% 8- Potential energy
o
-]
=
|6 AN Kinetic energy

4 -

2 .

0 T

0 5 10 15 20

Deformation [mm]

Figure 8.1  Energy, applied and internal, for SDOF system analysed by use of
different transformation factors in different ranges.

This is easily seen by studying areas representing the total internal energy when the
maximum displacement is reached, see Figure 8.2. When the maximum displacement
is reached the total internal energy equals the maximum potential energy R-uqx. Since
the internal resisting force is equal in the two cases, if it is assumed that the ideal
plastic range is reached, the maximum displacement in u,,,. > case 2 must be larger
than the maximum displacement u,,,,,; in case 1.

/’ Energy loss

\ \
Total applied energy \ Total internal \ Total internal
energy R [ energy R [

max,1 max,2

Case 1 Case 2

Figure 8.2  Total internal energy in case 1, where energy is lost due to change of
transformation factors, and case 2 where no energy is lost.

In order to compensate the loss of mass, and hence energy, when entering a new range
the value of the acceleration can be increased in this point. This is here only shown
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when going from the elastic range to the elastoplastic range but the same method is
used when going from the elastoplastic to the plastic range.

Just before the elastoplastic range is entered the displacement is u. and the
differential equation is:

Ko Mii, +Kk{,Ku, =P (8.13)

The displacement when the elastoplastic range is entered is u. and the differential
equation is:

K Mii + kP Ku,, =P (8.14)

The transformation factor xxp is equal to 1.0 and in order to keep the energy constant
in this specific point Equation (8.15) must be fulfilled.

KM Mii, = K, Mii, (8.15)
giving:
el
. Kyp ..o
i, =—ri, (8.16)
KMP

However, this is not done in the analyses discussed in this report. Instead constant
values of the transformation factors are used trough the analyses giving no energy
loss.

8.1.2 Constant transformation factors

Norris (1959) also states that, since the difference between the transformation factors
in case of linear elastic and ideal plastic material is not great it is often permissible to
use an average value of the transformation factors throughout the elastoplastic
dynamic analysis.

This can be assumed to be valid also for trilinear material where the transformation
factors thus are calculated as shown in Equation (8.1). However, it can be discussed if
this is the best value to use in the analyses. The energy required to get motions of the
system depends, among other quantities, on the mass. More energy is required to get
motion of a heavy body than for a less heavy body. Since the equivalent mass
becomes smaller when an average value of the transformation factors is used less
energy will be consumed when starting the motion. This is here assumed to influence
the results so much that it motivates to use the transformation factor for linear elastic
material in the analyses. In the analyses made in Chapter 7 the applied transient load
is active only in the elastic range which motivates the choice even more.
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8.2 Discussion about FE models used in analyses

In Chapter 7 the time-displacement curve calculated by use of the simplified method
of transforming beams into SDOF systems is compared with results from finite
element analyses. This is made in order to verify the SDOF method. Even though
there is not full agreement between the results the SDOF method is assumed to be
results that are accurate enough. In these FE analyses the beams are modelled so that
yielding will only occur in the points where the plastic hinges are assumed to form.
However, in the reality, the zones with yielding are larger than just a point why this
way of modelling the beams can be questioned.

If the simply supported beam subjected to a concentrated load, case(1.1), are modelled
in the same way as in Section 7.1.2 but this time all elements have trilinear material
behaviour the maximum midpoint displacement are almost twice the value achieved
with the FE model used in the FE analyses in Chapter 7, see Figure 8.3.

— =SDOF ——FEM, as modelled in Chapter 7 — = FEM, all elements have trilinear material
35
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Figure 8.3  Time-displacement relation for case(1.1) from FE analyses where two
different types of FE models are and the time-displacement curve from
SDOF analyses.

The increased value of the maximum midpoint deflection can be explained by the fact
that also elements around the midelement will reach the plastic range and will
therefore achieve larger deformations. This is hence not a problem in case of linear
elastic material or if the plastic range is not reached in case of trilinear material. The
comparisons made in Chapter 7, when having plastic effects, can therefore be said to
verify that the method of transforming deformable bodies into SDOF systems is rather
well corresponding to the idealized reality rather than the “real” reality. This means
that rather the assumptions made for plastic effects made in the SDOF analyses than
the method it self shall be questioned.

This effect does not appear in case of uniformly distributed loads even though the
plastic range is reached.
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9 Pressure and impulse load acting on SDOF system

In this chapter the concepts of pressure and impulse load are shown and discussed. Let
the loads act on a SDOF system, as shown in Figure 9.1, where damping is neglected.
The SDOF system is assumed to be in equilibrium position (no movement) before the
loading starts.

1

Figure 9.1  SDOF system with mass M , load P and internal force R .

In the case of pressure load the load will reach the maximum value instantaneously
and keep this value for unlimited time. The impulse load increases and decreases
instantaneously and the duration of time the load is applied is infinitely small. The
small duration of the load time is compensated by a very high value of the load.
Figure 9.2 illustrates the principals of the two extreme cases.

P(1) P(2)

Figure 9.2 Characteristic pressure and impulse load respectively.

9.1 Pressure load

If a pressure load is acting on the system in Figure 9.1 the mass will move in the same
direction as the load if the load is larger than the internal force. The system will
accelerate as long as the value of the load is higher than the value of the internal force.
Once the internal force equals the load the acceleration will stop and the system will
achieve the maximum value of velocity. When the value of the internal force is higher
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than the value of the load the retardation of the system starts. The maximum
displacement is reached as the work performed by the external load equals the work
carried out by the internal force, and the velocity then becomes zero. This course of
events is shown in Figure 9.3.

P,R

P =R Internal work

AN

External work

N U
. 7
Retardation of 4,
| |, system
Vl‘
Acceleration

of the system

Figure 9.3 Internal and external work for SDOF system subjected to pressure load.

The expressions for external and internal work are used when deriving the maximum
value of the characteristic pressure load, P,, that the system can stand for an allowed
maximum displacement #p,,x. The maximum external and internal works are shown
graphically as the areas in Figure 9.3 and the expressions for these areas are:

U=t pax

rl internal = I R(u)du (9 1)
u=0
I_I external ,P = Pcumax (92)

As the maximum displacement is reached, and the velocity becomes zero, the internal
work equals the external work, meaning that Equation (9.1) equals (9.2). Using this
relation and rearranging the terms the expression for the maximum load that the
system can stand for a given value of the allowed maximum displacement is:

u :ummx

jR(u)du
p = _ux0

c

(9.3)

u max

Hence, if a maximum displacement, umay, 1s allowed a maximum value of the pressure
load according to Equation (9.3) is allowed.
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9.2 Impulse load

For a characteristic impulse load, /., the system, with a mass M, obtains an
instantaneous and maximum velocity. The expression of the velocity can be derived
by using the second law of Newton that normally is expressed as:

P=M"l4 9.4)
where P external load [N]
M mass [ke]
a acceleration [m/s?]

The acceleration can then be expressed (by rearranging the terms in Equation (9.4))
as:

a=— (9.5)

By definition the acceleration is the first derivate of the velocity with respect to time
and can be written as:

_dv(

o= (=) (9.6)

Using Equations (9.5) and (9.6) gives:

dv _ P ¢t P()
—=— = v=|—=dt 9.7
Y / 07
The mass is constant and the velocity can thus be expressed as:
1 t
v=—2|P(t)dt 9.8
- j (1) ©.8)

The impulse is represented by the area under the load curve as shown in Figure 9.4
and is by definition:

I = jP(z)dt (9.9)
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P(t)
N

— I = jP(t)dt

<!
rd

Figure 9.4  Characteristic impulse.

Since the load duration of a characteristic load is infinity short the instantaneous
velocity can be expressed by means of Equations (9.8) and (9.9).

,=Le (9.10)

The characteristic impulse load is an idealized load not represented in the reality even
though general impulse loads can resemble it. For these general impulse loads, where
the load duration is not infinity short, the instantaneous velocity and hence the
acceleration will depend also on the load-time relation.

After removal of the load, due to the internal resistance, the velocity decreases. When
the velocity, and consequently the kinetic energy, becomes zero the maximum
displacement, and consequently the maximum internal work, is reached. Initially,
when the displacement of the system is zero and thus the potential energy is zero, the
external work has a maximum value. So, all kinetic energy becomes potential energy
when the maximum displacement is reached. The expressions for the maximum
internal and external work are:

U=l pax

rlinternul = .[R(u)du (911)
u=0
2
1
M| —<

M (Mj 1’ 9.12)

rlexternal,[ - - -
2 2 2M

For the maximum displacement Equation (9.11) equals Equation (9.12). Rearranging
the terms gives the expression for the maximum value of the impulse load that the
system can carry.

c

I = \/2MT}X2(u)duW (9.13)

u=0

So, if a maximum displacement, unyay, is allowed a maximum value of the impulse
load according to Equation (9.13) is allowed.
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9.3 Determination of capacity for beams transformed to
SDOF systems

When determining the capacity for a beam transformed to a SDOF system
Equations (9.3) and (9.13) are used but with equivalent values as described in
Section 6.1. Equations (9.3) and (9.13) expressed with equivalent internal force R,
equivalent mass M,, equivalent pressure load P. and equivalent impulse load /.
become:

j R, (u)du
p = _u=0 (9.14)
“ umax
I, = \/2 [ R, (uw)du M, (9.15)
u=0
where
P, =K,P, (9.16)
I, =K1, (9.17)
R, =kR (9.18)
M,=k, M (9.19)
and M is the total mass of the beam.
Equations (9.16) to (9.19) inserted in Equations (9.14) and (9.15) gives:
j R(u)du
u=0 (9.20)
ch = KKP
u]TlaX
I = \/ZKKP | Ry T M 9.21)
u=0

where as before K, =k /K, and K, =K, /K, .
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9.3.1 Linear elastic material

For a linear elastic material the internal force, R, varies linearly with the displacement,
u, as shown in Figure 9.5 and is expressed as:

R=Ku
R =Ku_. (9.22)
R

/ |k

u

max

»
Tu

Figure 9.5  Internal force for linear elastic material.

The integral in Equations (9.20) and (9.21) is here represented by the shaded area in
Figure 9.5:

2

u:umax K
| RGuydu = MT (9.23)

u=0

By use of Equations (9.20), (9.21) and (9.23) the expressions for the pressure load and
impulse load that the system can endure for a certain value of the allowed maximum
displacement can be written as:

—_ Kumax —_ Kumax —_ Rm
P =Ky =Kgp 9 _KKPT (9.24)

Kty M PP
I, :\/2KKP 2 KyupM =K pKyp ?Rmz = KKPKMPZ (©.25)

where w=,/K/M is the circular frequency of the SDOF system.

In Figure 9.5 it can be seen that in case of linear elastic material the maximum
displacement, umax, can be expressed as:

y =R (9.26)
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Rearranging the terms in Equations (9.24) and (9.25) and using Equation (9.26) gives
the expressions for the maximum displacement, umax, With respect to the pressure load
and impulse load respectively.

R (P) 2P
u P - m C - C
max (£.) P KK (9.27)
—_ Rm (Ic) — IC \/K/M /\/KKPKMP —_ 1 Ic
Upex (1) = = = (9.28)
K K KKPKMP Mw

9.3.2 Ideal plastic material

For an ideal plastic material the internal force, R, is constantly equal to the maximum
internal force, R,,, when the displacement, u, is nonzero, as shown in Figure 9.6.

Figure 9.6  Internal force for ideal plastic material.

The integral in Equations (9.20) and (9.21) is here represented by the shaded area in
Figure 9.6:

U=Umax

[R@)du = R,u,, (9.29)
u=0

By use of Equations (9.20), (9.21) and (9.29) the expressions for the pressure load and
impulse load that the system can stand for a certain value of the allowed maximum
displacement can be written as:

R u
P =Ky ——"=KR, (9.30)

max

I, = 2K R o KoM = K oK o 2R o M (9.31)

In case of ideal plastic material the maximum displacement, ., cannot be expressed
with respect to the pressure load as in case of linear elastic material. However, by
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using Equation (9.31) the maximum displacement, u.x, can be expressed with respect
to the impulse load.

I°
Up (1) = ‘ (9.32)
KKPKMP 2RmM

9.3.3 Summary of capacity for beams transformed to SDOF systems
The capacity of an equivalent SDOF system subjected to pressure and impulse load
are determined for linear elastic material and ideal plastic material respectively. For a

general shape of the deflection the beam equations are shown in Table 9.1.

Table 9.1 General beam equations.

I. Linear elastic material

Rln
P =K, (a)

R
I, =\ KpKyp —/K;—lM (b)

1 2P
umax (F)L) =— -
Kep K

. 1,
umaX(IC)_mW (d)

I1. Ideal plastic material

F)c = KKPRm (e)

]c = \/KKPKMP \/2RmumaxM (f)
1 1}

Unay (1) = (2)

B KKP KMP 2Rm M

In Appendix G the expressions in Table 9.1 are developed for a simply supported
beam as well as for a beam fixed in both ends subjected to a concentrated and
uniformly distributed load.
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9.4 Capacity for SDOF systems

The equations in Table 9.1 can be written in a general form for a SDOF system by
letting the equivalent values of the quantities be equal to the actual values.

M,=M (9.33)
R, =R (9.34)
P=P (9.35)

Meaning that the transformation factors x in Table 9.1 shall be 1.0 (compare to
Equations (9.16) to (9.19)). The general equations for SDOF systems are shown in
Table 9.2.

Table 9.2 General equations for SDOF system

I. Linear elastic material

R Ku
pPp=—11=__ a
== (@)
R
1. = = b
K/M ®)
2P
u_(P)=——= I
max (F2) X (c)
(1) = @
Unax L) =
N KM
I1. Ideal plastic material
F, =R, (e)
IC = 2RmumaxM (D
] 2
u_ (I )=——=
max( C) 2R M (g)

m

The relation between the pressure load P. and the impulse load /. can be expressed for
the different materials. In case of linear elastic material the fact that the maximum
displacement u,y shall be equal for the two loads can be used.
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Upax (P.) = U (1) (9.36)

Using (c) and (d) in Table 9.2 and using the circular frequency of vibration w the
relation between P, and /. in the linear elastic case can be expressed.

w= % where K is the stiffness and M is the mass (9.37)
7 2

P=I— < [ =P — (9.38)
2 w

In case of ideal plastic material the pressure load P. must be equal to the maximum
value of the internal force R,, if the system shall move. Using Equations (e) and (f) in
Table 9.2 gives the relation between P, and /. for ideal plastic material.

12
I.=\2Pu, M - P =— (9.39)

Where Umax: umax(lc)-
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10 Equivalent static load

In order to simplify the analysis of a structure subjected to an impulse load the load
can be transformed to a static equivalent load. This means a static load chosen in such
a way that it will result in the same maximum displacement as the impulse load.

As discussed in Section 9.2 the total energy, kinetic energy plus potential energy, for
an undamped structure subjected to a dynamic load is constant. If the velocity
(consequently also the kinetic energy) is zero the potential energy, as well as the
displacement, has a maximum value. Even though it takes a while before the
maximum velocity is reached when a dynamic load is applied it can be assumed that
the maximum value of the kinetic energy occurs when the displacement is zero. This
is at least a good approximation for a hard, short impulse loads. Hence, the maximum
value of the kinetic energy equals the maximal value of the potential energy. In case
of a static load there is only potential energy (no kinetic energy).

Due to the condition that the displacement in case of a static load must equal the
maximum displacement for the dynamic load the potential energy in the static case
must equal the maximum potential energy for the dynamic load. Using this statement
together with the statement made above gives:

Potential energy for static case = Maximum kinetic energy for dynamic case (10.1)

From this statement the expression of the equivalent static load P*** can be defined
with respect to the characteristic impulse load /..

10.1 SDOF system

An SDOF system subjected to an impulse load will achieve vibrations and the
instantaneous velocity, caused by a characteristic impulse load, derived in Section 9.2,
is for a load, regarded as an impulse load, written as:

y=— (10.2)

(10.3)

M M(I1Y _I?

M 2M
By means of the equations above the external work (the work due to the impulse) can
be expressed as the difference in kinetic energy from time to time.

— 122 _112

external, I — 2M (1 04)
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The maximum external work equals the maximum kinetic energy since the system is
at rest before the load is applied, v; = 0 and v, = v = v,,,, and therefore has no initial
kinetic energy:

12
rlextemal,[ = 2M :{]2 =1} = 2M (105)

The increase of work, dll of the external static load causing a differential

tatic
external ,P*"¢ ?

displacement du, for a system subjected to the static load P**“ can be expressed as:

— static
external , P =P Ll (106)

By integrating Equation (10.6) over the total displacement the total work of the
external static load is achieved.

u=u

— J‘Psmztcdu (10'7)

u=0

external , P*'""™

The expression for the total work of the load will be different for different materials.

10.1.1 Linear elastic material

In case of linear elastic material the static external load, P, can be expressed by
use of the stiffness, K, and the displacement u from the unloaded equilibrium position.

Pstatic' :K l]l (108)

Equations (10.7) and (10.8) give the total work of the external static load as:

u=u u=u Ku2
— static — —
o preic = | P = [ Ku Gl = (10.9)
u=0 u=0

The total work of the external static load in Equation (10.9) shall be equal to the work
of motion caused by the impulse load in Equation (10.5).

R G ) Y o
2 oM K M

(10.10)

The static load equivalent to the impulse load acting on a SDOF system, with linear
elastic behaviour, can now be expressed as:

static — K —_
plae —‘/ﬁl—cd (10.11)

where w is the circular frequency of the SDOF system.
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10.1.2 Ideal plastic material

In case of a SDOF system with ideal plastic behaviour subjected to a constant load
P the displacement will go from 0 to u and the total external work can be
expressed by use of Equation (10.7).

u=u

exmﬁnal’Psmm - J.Pstaticdu - Pstatic m{ (1012)

u=0

The total work of the external s