Oljeskadeskyddet
utmed de svenska kusterna
och i de stora insjöarna inför 2010
Oljeskadeskyddet
utmed de svenska kusterna
och i de stora insjöarna inför 2010
Innehållsförteckning

Inledning .. 5

Sammanfattning ... 7

Summary ... 10

1 Miljökvalitetsmål för hav, kuster och sjöar ... 13

2 Oljeskadeskydd .. 15
 2.1 Aktörer .. 15
 2.2 Förebyggande arbete ... 16
 2.3 Operativt oljeskadeskydd till sjöss och på land ... 16

3 Erfarenheter .. 19
 3.1 Lagstiftning och strategier ... 19
 3.2 Samarbete ... 20
 3.3 Operativt arbete .. 20
 3.4 Utbildning ... 21
 3.5 Oljeskador ... 22
 3.6 Ekonomi ... 24
 3.7 Övriga erfarenheter ... 25

4 Riskanalys .. 28
 4.1 Risker med fartygstrafik och transportmönster ... 29

5 Mål för det svenska framtida oljeskadeskyddet ... 31
 5.1 Övergripande mål .. 31
 5.2 Mål .. 31

6 Åtgärder ... 33
 6.1 Förebyggande åtgärder .. 33
 6.2 Åtgärder för oljeskadeskydd till sjöss .. 35
 6.3 Åtgärder för oljeskadeskydd i strandzonen .. 35
 6.4 Åtgärder för uppföljande verksamhet ... 36
7 Bakgrund och fakta

7.1 Vad händer med olja i vatten? ... 37
7.2 Effekter av olja på växter, djur och stränder .. 41
7.3 Effekter av olja på människors hälsa och säkerhet 44
7.4 Vad händer och vem gör vad vid ett oljeutsläpp i svenska vatten? 45
7.5 Internationella konventioner och avtal samt övrigt internationellt samarbete ... 48
7.6 Svensk lagstiftning, strategier och samarbete .. 63
7.7 Risker ... 68
7.8 Förteckning över oljor .. 88
7.9 Resurser för bekämpning till sjöss och för strandsanering 89

8 Förklaringar av ord och begrepp ... 91
Inledning

Utsläpp av olja utmed de svenska kusterna och i våra inlandsvatten orsakar allvarliga skador. Naturmiljön med sitt växt- och djurliv skadas, stränder kletas ned och bottnar förstörs. Oljeutsläppen får också sociala och ekonomiska konsekvenser för dem som drabbas.

- Oljetransporterna till havs i vårt närområde har ökat väsentligt och beräknas öka ytterligare i framtiden. Även antalet olagliga oljeutsläpp fortsätter att vara stort.
- En teknisk utveckling har skett inom oljeskadeskyddet, t.ex. finns nu nya metoder att identifiera olja och nya navigerings- och identifieringssystem för sjöfarten.
- Ny lagstiftning har införts för sjöfarten respektive för de myndigheter, kommuner och organisationer som arbetar med oljeskadeskydd. Berörda myndigheter och kommuner har också fått nya instruktioner för sitt arbete.
- All svensk miljölagstiftning finns nu samlad i Miljöbalken, med målet att främja en hållbar utveckling. Enligt den vägledande principen om sektorsansvar skall varje samhällssektor i Sverige ta ansvar för att miljöaspekterna integreras i alla verksamheter inom sektorn.
- Det svenska offentliga miljöarbetet bedrivs nu med inriktning på att nå 15 nationella miljökvalitetsmål. Särskilt miljömålen ”Hav i balans samt levande kust och skärgård” och ”Levande sjöar och vattendrag” är relevanta i arbetet med oljeskadeskydd. Det svenska miljöarbetet styrts också av Strategin för hållbar produktion och konsumtion (IPP), i syfte att minska varors och tjänsters miljöpåverkan.

Räddningsverket har inom sitt ansvarsområde att i samverkan med andra berörda myndigheter utveckla beredskapen för miljöräddningstjänst och saneringsinsatser vid oljeolyckor och att redovisa för regeringen vilka åtgärder som vidtagits. Arbetet med att utforma inriktningen av beredskapen för oljebekämpning och sanering av oljeutsläpp till sjöss och i de stora sjöarna, samt förslag till framtida inriktning av beredskapen, är ett led i detta.

De samverkande parternas gemensamma syn på det svenska oljeskadeskyddet till havs och i inlandsvattnen har, tillsammans med olika svenska åtaganden i internationella avtal, sedan 1980-talet utgjort grunden för den långsiktiga planeringen av svensk miljöräddningstjänst. Erfarenheterna av genomförda bekämpnings- och saneringsoperationer är ett viktigt underlag i detta arbete.

Samverkansgruppen redovisar här en gemensam grundsyn på oljeskador och på hur det svenska oljeskadeskyddet bör vara uppbyggt och fungera. Denna grundsyn bygger på erfarenheter och slutsatser från det tidigare arbetet och innefattar revideringar i de delar där man anser att bl.a. en förändrad riskbild och tillgång till ny teknik förändrar en ändring eller utveckling av inriktningen. Gruppen lägger fast den hotbild som man anser bör vara dimensionerande för det svenska oljeskadeskyddet samt redovisar gemensamma övergripande mål, prioriterade strategier och åtgärder.

I den nya Lagen om skydd mot olyckor, och tillhörande förordning, läggs ansvar och befogenheter fast på ett entydigt sätt. Lagstiftningen skapar dessutom goda förutsättningar för berörda aktörer att fortlöpande samverka på central, regional och lokal nivå vad gäller operativ planering, tekniskt samarbete m.m. Även internationellt sker nu en större samverkan än vad som tidigare varit fallet.

Här kan också nämnas att svensk beredskap för oljebekämpning omfattar även sådana kemikalier som kan bekämpas och tas om hand med i huvudsak samma teknik som löskommen olja. I föreliggande dokument används dock genomgående ”oljebekämpning” som ett sammanfattande begrepp.
Sammanfattning

Dokumentet Oljeskadeskyddet utmed de svenska kusterna och i de stora insjöarna inför 2010 är avsett att fungera som ett strategi- och policydokument. Arbetet med dokumentet har bedrivits i en nationell samverkansgrupp med representanter för Räddningsverket, Kustbevakningen, Sjöfartsverket, Naturvårdsverket, Kommunförbundet och IVL Svenska Miljöinstitutet.

Faktaunderlag behövs för beslut och insatser
Syftet är att ge regering, riksdag och myndigheter ett faktaunderlag för sina övergripande ställningstaganden om vilka målen och medlen skall vara för det svenska oljeskadeskyddet. Detta behövs för att

- underlätta långsiktig planering,
- berorda myndigheter skall ha en gemensam grund för arbetet med oljeskadeskyddet,
- ge ett underlag för beslut om forsknings- och utvecklingsinsatser,
- ge möjligheter till samverkan kring i sammanhanget relevanta svenska nationella miljömål, främst ”Hav i balans samt levande kust och skärgård” och ”Levande sjöar och vattendrag”,
- ge berorda myndigheter ökade möjligheter till samverkan vid insatser och återföring av erfarenheter från sådana insatser, vilket i sin tur ger underlag för en fortlöpande uppföljning av hur det svenska oljeskadeskyddet fungerar så att en grund kan skapas för eventuella beslut om förändringar av inriktningen på skyddet,
- ge möjligheter till återföring av internationella erfarenheter av oljeskadeskydd.

Ett faktaunderlag om det svenska oljeskadeskyddet behövs också för att ge allmänheten en god bild av hur skyddet mot oljeolyckor i svenska vatten planeras och fungerar.

Mål för det svenska oljeskadeskyddsarbetet till år 2010
Det övergripande målet för det svenska oljeskadeskyddet är att skydda svensk ekonomisk zon, svenskt sjöterritorium, Vänern, Vättern och Mälaren samt strandzonerna längs de svenska kusterna mot de skador som utsläpp av olja kan förorsaka på miljö och samhälls-ekonomiska värden.

Det övergripande målet för det svenska oljeskadeskyddet till år 2010 kan indelas i följande delmål:

- mål för förebyggande åtgärder,
- mål för oljeskadeskyddet till sjöss,
- mål för oljeskadeskyddet i strandzonen,
- mål för den uppföljande verksamheten efter genomförda bekämpningsoperationer.

Målet för förebyggande åtgärder är att minimera riskerna för oljeutsläpp till havs och i inlandsfarvatten.
Målet för oljeskadeskyddet till sjöss är att ha förmåga att tidigt bekämpa utsläpp och genom effektiva bekämpningsinsatser påtagligt bidra till att minska de negativa effekterna på vattenmiljön och i strandzonen av allvarliga utsläpp.

Målet för oljeskadeskyddet i strandzonen är att det skall finnas beredskap för att kunna bekämpa olja som kommer i land från utsläpp till havs av olja och kunna sanera strandområden. Målsättningen skall vara att de ekonomiska och sociala följderna och miljöeffekterna av utsläppen skall minimeras.

Målet för den uppföljande verksamheten och utvärderingen är att samla in och bearbeta sina erfarenheter från tidigare händelser och genomföra insatser. Detta blir sedan till hjälp när man skall vidareutveckla arbetets inriktning.

Ett gemensamt mål är att

- operativt samarbete mellan berörda myndigheter på nationell, regional och lokal nivå skall kunna påbörjas omedelbart när ett oljeutsläpp har skett.

Ätgärdsprogram
För att uppnå dessa mål föreslås följande åtgärder.

Förebyggande åtgärder
- Den process som har påbörjats för att klassa Östersjön som särskilt känsligt havsområde (PSSA) bör vara avslutad till år 2007
- De olagliga utsläppen av olja i svenska vatten skall vara försumbara till år 2010
- Det bör införas förbud för trafik i svenska vatten av enkelskrovsfartyg för frakt av alla typer av oljelaster
- Ett effektivare samarbete bör byggas upp mellan de myndigheter som ansvarar för hamnstatskontrollen i Östersjöområdet
- Efterlevnaden av Östersjöstrategin om mottagningsanläggningar för avfall från fartyg (Baltic Stategy on Port Reception Facilities for Ship-generated Wastes) bör följas upp
- Berörda svenska oljeskadeskyddsmyndigheter och -organisationer bör genomföra regelbundna gemensamma övningar
- Det internationella samarbetet vidareutvecklas

Åtgärder för oljeskadeskydd till sjöss
- Beredskap och kapacitet att bekämpa oljeutsläpp skall öka
- Det internationella samarbetet skall vidareutvecklas
- Oljespridningsmodellen Seatrack Web skall fortsatt utvecklas

Åtgärder för oljeskadeskydd i strandzonen
- En nationell, webbaserad miljöatläs för de svenska kusterna och de stora sjöarna behöver utarbetas och tas i praktiskt bruk.
- Arbetet med kommunala beredskapsplaner behöver påskyndas.
- Det behöver utvecklas mer miljöanpassade metoder för sanering av olja i strandzonen.
• Lagstiftningen om farligt avfall behöver utvärderas och om möjligt ändras för att göra det lättare att ta hand om oljeförorenat material.
• Beredskapen för oljeskadeskydd i strandzonen behöver ses över mer i detalj.

Åtgärder för uppföljande verksamhet
• Metoder behöver vidareutvecklas för att följa upp och bedöma konsekvenser av oljepåslag och oljesanering.
• Gemensamma uppföljningar skall göras efter större oljepåslag och saneringar.
Summary

The document *Oil Combating along the Swedish Coastline and in the Major Lakes* up to 2010 is intended as a strategy and policy document. Work on the document has been in the format of a national collaboration group with representatives from the Swedish Rescue Services Agency (SRSA), the Swedish Coast Guard, the Swedish Maritime Administration, the Swedish Environmental Protection Agency, the Swedish Association of Local Authorities, and IVL Swedish Environmental Research Institute Ltd.

Facts are needed for decision-making and operations

The aim is to provide the Swedish Government, Parliament and authorities with a compilation of facts, for their overall position on which objectives and means should apply for Swedish oil combating.

This is needed:

- In order to facilitate long-term planning,
- So that all authorities concerned have a common basis for work with oil combating,
- To provide a foundation for decisions on research & development projects,
- To provide opportunities for collaboration in the context of relevant Swedish national environmental objectives, primarily, "Maritime balance and a living coastline and archipelago" and "Living lakes and waterways",
- To provide the authorities concerned with increased opportunities for collaboration at operations and within the feeding back of lessons learned from such operations, which in turn provides a foundation for continued follow-ups on how Swedish oil combating work is functioning, so that a basis can be created for possible decisions on changes to the aims and directions of protection,
- To provide opportunities for the feeding back of lessons learned from international oil combating.

A compilation of facts about Swedish oil combating is also needed in order to provide the public with a good representation of how protection against oil emissions in Swedish waters is planned and how it all works.

Objectives for Swedish oil combating up to 2010

The overall objective for Swedish oil combating is to protect the Swedish economic zone, Swedish territorial waters, the lakes of Vänern, Vättern and Mälaren, and shorelines around the Swedish coast from the damage that oil emissions can cause to the environment and the national economy.

The overall objective for Swedish oil combating up to 2010 can be divided into the following sub-objectives:

- Sub-objective for preventive measures
- Sub-objective for maritime oil combating
- Sub-objective for oil combating in coastal areas
- Sub-objective for follow up activities on completion of a combating operation
The objective for *oil combating in coastal areas* is that there should be emergency preparedness to combat oil that comes ashore, and also preparedness for shoreline cleanup. The purpose should be to reduce the economic, societal and environmental consequences of an emission.

The objective for *follow-up and evaluation work* is to collate and process observations and lessons learned from previous incidents and completed operations. This will then be of use in the further development of aims and directions for oil combating.

A common objective is that: in the event of an emission, operational co-operation between authorities at a national, regional and local level should be able to commence immediately.

Measures programme

In order to achieve these objectives the following measures are suggested.

Preventive measures

- The current process of classifying the Baltic Sea as a particularly sensitive sea area (PSSA) ought to be completed by 2007.
- The illegal emissions of oil into Swedish waters shall have become negligible by 2010
- A prohibition on the transport of oil in single-hulled vessels ought to be prescribed for Swedish waters.
- A more effective level of co-operation ought to be established between the authorities responsible for the inspections of major ports in the Baltic Sea area.
- Observance of the Baltic Strategy on Port Reception Facilities for Ship-generated Wastes ought to be monitored.
- The relevant Swedish oil combating authorities and organisations ought to hold regular joint exercises.
- International co-operation is being further developed.

Maritime oil combating measures

- There ought to be an increase in the emergency preparedness and capacity for combating oil emissions.
- International co-operation shall be developed further.
- The oil dispersion model Seatrack Web will continue to be developed.

Measures for oil combating in coastal areas

- A national web based environmental atlas for the Swedish coastline and the major lakes needs to be drawn up and adopted for practical use.
- Work on municipal emergency preparedness plans needs to be accelerated.
- There is a need for the development of more environmentally friendly methods for oil cleanup on shorelines.
- Legislation on hazardous waste needs to be evaluated and altered to make it easier to deal with oil-polluted material
- Emergency preparedness for oil combating in coastal area needs to be examined in detail.
Measures for follow-up activities

- Methods need to be further developed for follow-ups and the assessments of the consequences of shoreline oil-pollution and oil cleanup.
- Common follow-ups shall be conducted after cleanup operations for large amounts of beached oil.
1 Miljökvalitetsmål för hav, kuster och sjöar

Miljökvalitetsmålen och delmålen är inte författningsreglerade och därmed inte juridiskt bindande. De skall emellertid vara vägledande för vilka åtgärder på miljöområdet som statliga myndigheter och andra samhällsaktörer vidtar. Vissa av de tidigare målen för miljöarbetet inlemmas i den nya strukturen, medan andra försvinner. Miljömålsbeslutet gäller inte s.k. sektormål beslutade inom särskilda politikområden, såsom jordbrukspolitiken, kulturpolitiken, skogspolitiken och transportpolitiken.

För att få en tydlig ansvarsfördelning i miljömålsarbetet har ansvariga myndigheter utsetts för vart och ett av miljökvalitetsmålen. Naturvårdsverket har ansvar för bl.a. miljömålen ”Hav i balans samt levande kust och skärgård” samt ”Levande sjöar och vattendrag”.

Ett av delmålen för målet ”Hav i balans samt levande kust och skärgård” är att ”genom skärpt lagstiftning och ökad övervakning skall utsläppen av olja och kemikalier från fartyg minimeras och vara försumbara senast år 2010”. Det huvudansvar som lagts på vissa
myndigheter fråntar emellertid inte övriga myndigheter ansvaret för miljömålsarbetet, t.ex. inom ramen för det särskilda sektorsansvaret. Exempel på centrala myndigheter som har viktiga uppgifter vad gäller delmålet om utsläpp av olja och kemikalier från fartyg är Räddningsverket, Kustbevakningen och Sjöfartsverket.

Ett av delmålen för ”Levande sjöar och vattendrag” är att ”senast år 2009 ska vattenförsörjningsplaner med vattenskyddsområden och skyddsbestämmelser ha upprättats för alla allmänna och större enskilda ytvattentäkter”. Eftersom de stora sjöarna Vänern, Mälaren och Vättern är viktiga dricksvattentäkter, som kan skadas av utsläpp av olja, gäller detta delmål för dem.

Räddningsverket har sektoransvar för miljökvalitetsmålen inom området skydd mot olyckor och har inom denna ram utarbetat fem övergripande miljömål. Det mål som berör oljeskyddsberedskapen är ”Minska antalet olje- och kemikalieutsläpp till havs och minska konsekvenserna av utsläppen”.

Sjöfartsverket och Kustbevakningen har tillsammans ansvar för att uppfylla vissa delar av de nationella miljökvalitetsmålen. Deras miljömålsarbete är i första hand inriktat på att minimera olagliga operationella utsläpp från fartyg, alltså utsläpp av orenat oljehaltigt avfall (ballastvatten, sköljvatten, slagvatten och oljerester) som härrör från den normala driften av ett fartyg.
2 Oljeskadeskydd

2.1 Aktörer

Ansvaret för den svenska miljöräddningstjänsten vid oljeutsläpp fördelas i dag mellan flera statliga, regionala och lokala myndigheter.

Sjöfartsverket har huvudansvaret för åtgärder som syftar till att förebygga oljeutsläpp från fartyg och olyckor till sjöss. När olyckor inträffar skall Sjöfartsverket, enligt lagen om åtgärder mot förorening från fartyg, se till att åtgärder vidtas ombord för att så långt som möjligt förhindra eller begränsa oljeutsläpp. Sjöfartsverket är svensk representant i HELCOM:s arbetsgrupp för sjöfartsfrågor, liksom i FN:s internationella sjöfartsorganisation IMO (IMO:s miljökommitté respektive sjösäkerhetskommitté) och i EU:s sjösäkerhetssamarbete.

Naturvårdsverket har ett avtal med *IVL Svenska Miljöinstitutet AB* som innebär att institutet upprätthåller en s.k. oljejou, där kommuner m.fl. kan få råd om sanering av olja. Oljejouren bistår med expertstöd åt Naturvårdsverket och andra myndigheter vid olyckor med utsläpp av olja till havs och i inlandsvatten.

Enligt Lagen om skydd mot olyckor får regeringen föreskriva, eller i särskilda fall bestämma, att *länsstyrelserna* övertar ansvaret för den kommunala räddningstjänsten inom en eller flera kommuner. Detta kan ske exempelvis vid stora oljeolyckor. Om räddningsinsatserna även omfattar statlig räddningstjänst skall länsstyrelsen svara för att insatserna samordnas.

2.2 Förebyggande arbete

Sjöfarten är internationell och därför ligger olika internationella konventioner och avtal i stor utsträckning till grund för den svenska lagstiftningen för det svenska miljöarbetet inom sjöfart och oljeskadtskydd till havs. Se 7.5. för mer detaljerade beskrivningar av dessa avtal.

2.3 Operativt oljeskadeskydd till sjöss och på land

Se 7.9 för mer detaljerade beskrivningar av de resurser som finns i länderna kring Östersjön för oljebekämpning till sjöss samt i Sverige för sanering av olja på stränder.

2.3.1 Prioriterade strategier för bekämpning och sanering av olja

Generellt gäller att ju tidigare och mer kraftfullt man kan sätta in insatser mot ett oljeutsläpp, desto större är chansen att bekämpningen blir framgångsrik.

- *I första hand* vidtar man åtgärder ombord på olycksfartyget (haveristen) för att förhindra eller i möjligaste mån begränsa ett utsläpp. Sådana åtgärder omfattar bland annat ompumpning av olja ombord från skadade till oskadade tankar, trimning (vattenpumpning mellan tankar), läkträng av olja från det skadade fartyget till ett annat fartyg samt tätning av skadade tankar.
• *I andra hand* vidtar man åtgärder för att begränsa spridningen av den olja som kommit ut i vattnet. Detta görs genom att man omger oljan med länsor (inläsning) och sätter igång arbetet med att ta upp oljan ur vattnet.

• *I tredje hand* inriktas man sig på att ta upp mesta möjliga volym olja ur vattnet. Samtidigt vidtar man åtgärder för att förhindra att olja förs in i och sprids inom skärgårdsområden, att oljan når särskilt känsliga områden (naturskyddsområden, häckningsplatser eller värdefull områden för rekreation, friluftsliv eller annat nyttjande), samt att oljan sprider sig längs stränderna och drabbar ytterligare områden.

Olja som hamnat på stranden tas upp med mekaniska metoder. Om det bedöms som nödvändigt finsanerar man därefter området. När man väljer metod för oljesanering i strandzonen måste man beakta ett antal olika förutsättningar och faktorer:

• Vilken typ av strand eller kust är det fråga om?
• Hur viktig och intressant är stranden från ekologisk respektive socioekonomisk synpunkt?
• Vilken volym strandad olja handlar det om?
• Hur djupt har oljan spridits i strandmaterialet?
• Vilken typ av olja är det och i vilken form och tillstånd befinner den sig (tjärklumpar, olja i flytande form etc.)?
• Vilka möjligheter finns det att transportera utrustning till det område som skall saneras?
• Vilka yttre förhållanden – vågor, strömmar, väderlek – råder i området?
• Hur stora oljeskador har det blivit på stranden?

2.3.2 Metoder för att bekämpa olja till sjöss

Se beskrivningarna i 7.4 av några typiska situationer som kan leda till oljeutsläpp till sjöss – oavsiktliga utsläpp p.g.a. olyckor eller avsiktliga, olagliga operationella utsläpp.

Möjligheterna att framgångsrikt bekämpa ett oljeutsläpp till sjöss beror till största delen på vilka fysikaliska och kemiska egenskaper oljan har, hur snabbt bekämpningsinsatsen kan påbörjas och resurser byggs upp, vilken tillgång man har till lämplig utrustning och metoder, personalens utbildning och träning samt väderförhållandena på platsen.

2.3.3 Metoder för att sanera olja i strandzonen

Man vidtar åtgärder för oljeskadeskydd i strandzonen innan, medan och efter det att oljan har kommit in till stranden. Det finns fyra typer av metoder för att sanera olja i strandzonen:

• **Strandtvättning:** Här används vatten av olika temperatur för flodning eller hög- eller lågtrycksspolning. Man kan även blästra med sand.
• **Mekanisk upptagning:** Oljan kan tas upp i det förorenade området med hjälp av manuella eller maskinella metoder. Manuell upptagning sker med handverktyg, medan maskinell upptagning görs med hjälp av vacuumsugar, strandrengörare, frontlastare och liknande utrustning.

• **Påskyndad biologisk nedbrytning:** Detta innebär att man tillsätter näringsämnen för att stimulera tillväxten hos de mikroorganismer som bryter ner oljan på naturlig väg.

• **Naturlig återhämtning:** Om området är svårtillgängligt eller vanliga saneringsmetoder är störande eller direkta skadliga kan det bästa vara att lämna oljan orörd för att löjas upp och brytas ner på naturlig väg.

2.3.5 Omhändertagande av insamlad olja och oljehaltigt avfall

3 Erfarenheter

Förslaget till åtgärdsprogram (kapitel 6) bygger på de positiva och negativa erfarenheter som vunnits under de senaste tio årens oljeskadeskyddsarbete i svenska farvatten och längs de svenska kusterna:

- Erfarenheterna visar att snabba brottsutredningar och att snabbt kunna ställa förövarna inför rätta i samband med olagliga oljeutsläpp kan ge mycket bra resultat. Detta bedöms i sin tur ha en avskräckande effekt på potentiella förövare.
- Samarbetet med våra grannländer har visat sig vara av avgörande betydelse för att effektivt kunna bekämpa oljeutsläpp i kustvatten. Det sker nu också en utveckling av det internationella samarbetet, t.ex. inom Helsingforskommissionen, vad gäller insatser för strandsanering.
- Det finns fortfarande brister i den kommunala beredskapsplaneringen och kommunerna behöver aktivt stöd i detta arbete.
- Det är ofta själva saneringsarbetet i strandzonen och på stränderna som leder till de största miljöskadorna av oljeutsläpp. Det behöver utvecklas metodik och rutiner för systematisk uppföljning och återföring av de erfarenheter som olika inblandade får vid faktiskt arbetet med att bekämpa olja som kommer upp på stränderna (oljepåslag). Det är också viktigt att utarbeta handböcker (manualer) med rekommendationer om vilka saneringsmetoder som är lämpliga att använda på olika typer av stränder, i syfte att minska miljöskadorna av själva bekämpningsarbetet.
- Vid saneringsinsatser som omfattar flera kommuner finns ofta behov av samordning. Vid några tillfällen har länsstyrelsen samordnat åtgärder och resurser vilket har visat sig fungera bra.

3.1 Lagstiftning och strategier

Vad gäller tillämpningen av regelverket anser de ansvariga myndigheterna ochorganisationerna sammanfattningsvis att det i allmänhet har fungerat väl och gjort det möjligt att samarbeta på ett bra sätt.

I Lagen om skydd mot olyckor, liksom i den tidigare Räddningstjänstlagen, anges avgränsningar mellan statlig och kommunal räddningstjänst. Detta medför att det ansvar som Kustbevakningen har för en oljeskyddsoperation som påbörjats ombord på ett olycksfartyg till sjöss övergår till den kommunala räddningstjänsten om detta fartyg måste tas in i hamn. Omvänt övergår ansvaret från den kommunala räddningstjänsten till Kustbevak-
ningen om fartyget måste tas ut från hamn. Samverkansgruppen anser att ansvaret hela tiden bör ligga kvar hos den myndighet som beslutat om bekämpningsåtgärden och påbörjat operationen.

Genom det arbete som pågår inom EU ställs krav på att alla EU-stater skall ordna så att en haverist vid behov skall kunna föras in till en lämplig skyddad plats (Place of Refuge). Det svenska regelverket bör därför utformas så en ansvarig myndighet (Sjöfartsverket, Kustbevakningen eller kommunal räddningsledning) kan fatta beslut som garanterar tillgång till en sådan skyddad plats.

Enligt Sjöfartsverkets erfarenheter från fartygsolyckor i svenska farvatten och efterföljande arbetet med haveristerna har samarbetet mellan samtliga inblandade parter påolycksplatsen genom åren har varit gott. Vid många tillfällen har det rått oklarhet om ansvarsförhållandena ombord på en haverist, men det har inte stört på det praktiska sjösäkerhets- och räddningsarbetet.

3.2 Samarbete

Kustbevakningen har ett omfattande **internationellt samarbete**. Denna samverkan har visat sig vara av avgörande betydelse för möjligheterna att tillsammans med ett eller flera andra länder framgångsrikt kunna bekämpa oljeutsläpp till havs. Det finns flera exempel på hur samarbetet har givit synnerligen goda resultat, både i ekonomiska termer och från miljösynpunkt.

Det förekommer ett omfattande **nordiskt samarbete** om såväl sjösäkerhetsregler som praktiskt bekämpningsarbete. Detta gäller både direkt samarbete länderna emellan och samarbete inför behandlingen av olika frågor i olika internationella sammanhang. Det vardagliga samarbetet och kontakterna mellan ländernas sjöfartsinspektorer är av stor betydelse, liksom de årliga mötena mellan de nordiska sjösäkerhetsdirektörerna.

3.3 Operativt arbete

Vad gäller beredskap så visar erfarenheten att en tidig insats med miljöskyddsartyg, som ständigt är under gång, är en förutsättning för att man på ett framgångsrikt sätt skall kunna bekämpa olja till sjöss.

Erfarenheter från oljeutsläpp visar dock att de kommunala beredskapsplanerna bör och kan förbättras främst vad gäller riskinventering, samverkan och hur man operativt använder sig av miljöinformation.

Erfarenheterna visar att det ofta handlar om mycket stora volymer oljeavfall, som man har svårt att ta hand om. Samtidigt är det tveksamt om det skall betraktas som rimligt att varje kommun skall planera för större mellanlager. Snarare bör varje län planera och förbereda för en eller två lämpliga mellanlagringsplatser för stora oljevolymer, medan kommunerna bör koncentrera sig på att planera för hopsamlingsplatser och platser för tillfällig förvaring av oljeavfallet i avvaktan på vidare transport till länets mellanlagringsplats(er).

Beredskapsplaner som omfattar såväl räddningstjänstinsatser och saneringsarbeten som alla möjligheter att hantera (ta emot och sedan göra sig av med) oljan saknas i många kommuner. Varje berörd kommun bör därför arbeta aktivt med riskplanering.

3.4 Utbildning

Räddningsverket har genom Centrum för risk- och säkerhetsutbildning till uppgift att genomföra utbildningar för att öka kompetens hos studerande, kommuner, företag m.fl. inom oljeskadeskyddet. Under 2002 genomfördes en saneringsledarutbildning i två steg.

Räddningsverket utbildar även den personal som har hand om de mobila oljeskyddsfordragen. Denna personal ställs till kommunernas förfogande vid ett oljeutsläpp och genomför även i sin tur kortare utbildning av dem som är inblandade i saneringen, främst vad gäller hantering av saneringsutrustning.

Foto: Kustbevakningen
3.5 Oljeskador

De flesta gånger när olja kommer in på stränder ställs kommunerna inför det faktum att oljan redan finns där och att skadeinventering och sanering är nödvändig. Oftast rör det sig om mindre volymer olja från operativa utsläpp.

Det är svårt att upptäcka olja under is och snö, något som kan vara ett bekymmer vid inventering och sanering vintertid, och att upptäcka olja under t.ex. tång och sand. I båda fallen behövs bättre kunskap och metoder.

Flygövervakning med fjärranalyserutrustning är en viktig förutsättning för att Kustbevakningen skall kunna upptäcka och dokumentera utbredningen av ett oljeutsläpps samt genom upprepade spaningsflygningar kunna följa hur utsläppets sprids.

Rapporterna från flyget ger räddningsledaren ett bra underlag för beslut om insatser på medellång sikt (de närmaste sex timmarna efter upptäckt). Genom att flygplanen har med sig en markör/oljeboj som kan fällas i ett oljeutsläpp och ta prov på oljan, ökar möjligheterna att konstatera vilken oljetyper det handlar om och göra jämförande analyser.
Flygplanen är utrustade med FLIR (Forward-Looking InfraRed Camera). Detta har ökat möjligheterna att i mörker klassificera och i viss mån identifiera fartyg som misstänks för olagliga oljeutsläpp.

Vid oljebekämpning i mörker har man fått vissa positiva erfarenheter av att använda strålkastare med UV-ljus, IR-kamera eller specialradar. Det har visat sig gå att upptäcka och följa ett oljeutsläpp med hjälp av satellitövervakning.

Sveriges Meteorologiska och Hydrologiska Institut (SMHI) har utvecklat spridningsmodellen Seatrack Web (STW). STW bygger på strömnings- och vindmodeller och kan användas för att simulera hur ett oljeutsläpp sprids i ett vattenområde.

Mekaniska metoder används vid bekämpning av oljeutsläpp till havs i svenska farvatten.

Advancing systems – fartyg som under gång genom vattnet med hjälp av sveparmar som sträcker sig ut från fartygssidorna via borstar eller pumpsystem tar upp olja från vattenytan – har effektiviserat bekämpningsarbetet. Vad gäller omhändertagande av tunga oljor och olja i isbemängda vatten kan konstateras att material och metoder fortfarande, globalt sett, är otillräckliga.

Efter den akuta bekämpningsfasen (mekanisk styrning av oljan, utläggning av strandskyddsdukar, etc.) börjar arbetet med att sanera stränderna. När det handlar om olyckor med så stora utsläpp att situationen, i enlighet med den nya lagen om extraordinära händelser i fredstid, bedöms leda till svåra påfrestningar i samhället, krävs att det görs en riskbedömning och viss beredskapsplanering.

För bekämpning och sanering av olja på stränder krävs olika typer av teknik och utrustning (matériel) bl.a. beroende på vilken typ av område som drabbats, vilken väderlek man skall arbeta i och vilken typ av olja det rör sig om. Lättlänsor och skyddsdukar bör användas i större utsträckning, eftersom miljön då kan skyddas och kostnaderna för sanering hållas nere.

3.6 Ekonomi

Erfarenheterna visar att det ställs stora krav på staten att i detalj kunna verifiera kostnader man haft för bekämpning och sanering i samband oljeutsläpp. En sådan redovisning skall lämnas till den som orsakat utsläppet/skadan (vilket betyder att både fartyget som gjort utsläppet och fartygets rederi skall ha redovisningen), till försäkringsbolagen samt till Internationella oljeskadefonden. Det är särskilt viktigt att man dokumenterar alla beslut, liksom det läge som rådde då respektive beslut fattades.

Reglerna om kommunens rätt till ersättning för saneringskostnader, liksom reglerna för ersättning för räddningstjänstkostnader, finns numera inskrivna i Lagen om skydd mot olyckor. Den omfattar bl.a. villkoren för ingrepp i annans rätt, skyldighet för statlig eller kommunal myndighet att delta i en räddningsinsats på anmodan av räddningsledaren samt kommunernas rätt till ersättning från staten för kostnader vid kommunal räddningstjänst med anledning av utflöde i vatten av olja eller andra skadliga ämnen.
I vissa fall får Räddningsverket veta att en oljesanering skett först då kommunen i fråga begär ersättning från verket. Det kan vid sådana tillfällen vara svårt att bedöma om sani-
ring skett i en omfattning som varit motiverad.

3.7 Övriga erfarenheter

Att ha oljeprov från ett utsläpp är av stor vikt för den fortsatta utredningen av skuldfrågan
och för bedömning av riskerna för miljön. Särskild utrustning och utbildning för
oljeprovtagnings finns nu att tillgå.

I Danmark har marinen (ansvarig myndighet för miljöskyddet till sjöss) infört metoden
att per radio kontakta fartyg som observeras i danskt ansvarsområde och upplysa om
gällande regler för utsläpp av miljöfarliga ämnen. Befälhavarna får på så sätt viktig infor-
mation och blir samtidigt uppmärksamma på att de är under observation. Enligt uppgift
har denna metod fungerat förebyggande och medfört att antalet utsläpp i danska vatten
minskat. Inom HELCOM överväger man för närvarande möjligheten att införa samma
metod i andra lämpliga områden inom Östersjöområdet.

Foto: Räddningsverket
4 Riskanalys

![Diagram](image)

Bilden är ett exempel på en spridningsberäkning som visar inom vilka ”riskzoner” ett oljeutsläpp från en fartygsolycka kan driva och sprida sig till inom loppet av 1, 3, 5, 7 och 10 dagar. Källa: Dr. S. Ovsienko. Från HELCOM SEA:5/2002

Det finns ett antal faktorer som redan bidragit till eller förväntas komma att bidra till att riskerna för oljeutsläpp minskar i framtiden:

- På sikt kommer den internationella fartygsflottan att föryngras, andelen tankfartyg med enkelskrov minska och antalet fartyg med dubbelskrov öka. Detta kommer att medföra att konsekvenserna av grundstötningar och kollisioner blir mindre allvarliga vad gäller oljeutsläpp.
- Nya regelverk, som exempelvis ISM-koden och STCW-konventionen, har införts för att kunna ställa högre säkerhetskrav på hantering och transporter av olja. Detta bidrar till en allmänt ökad medvetenhet kring miljöfrågor och sådan säkerhet.
- Utbyggnaden av informationssystem (VTS) för fartygstrafiken förväntas ge effekt i form av minskade risker för olyckor. Likaså underlättar utbyggnad av automatiskt identifikationssystem (AIS) en säker fartygsnavigering, vilket minskar olycksriskerna och gör det lättare att identifiera och spåra fartyg som kan sättas i samband med olagliga oljeutsläpp.
Det finns emellertid också ett antal faktorer och förhållanden som bidrar till att öka riskerna för olyckor med oljeutsläpp:

- Fartygstrafiken, inklusive fartygstransporter av olja, i Östersjön ökar. En ökning förväntas av såväl antalet fartygsrörelser (fartyg i trafik) som av de volymer olja som transporteras med fartyg.
- Det kan på kort sikt inte uteslutas att en betydande andel av dessa ökade oljetransporter till sjöss i Östersjön kommer att ske med äldre fartyg som är i dåligt skick.
- Rutinerna för hamnstatskontroller i Östersjöområdet är inte harmoniserade, vilket gör att undermåliga fartyg kan trafikera området utan att bli föremål för hamnstatskontroll.
- Terroristhandlingar har identifierats och uppmärksammats som fullt tänkbara hot mot fartyg och installationer till havs för utvinning av olja och gas (offshoreinstallationer).

4.1 Risker med fartygstrafik och transportmönster

En sammanvägd bedömning av olika typer av förändringar gör det rimligt att anta att riskerna kommer att förskjutas i riktning mot ökad sannolikhet för olyckor med tankfartyg, och då särskilt i Östersjön. Denna bedömning bygger främst på det faktum att trafiken med oljetankfartyg kommer att öka. Östersjön och övriga svenska farvatten har hittills varit förskonade från stora tankfartygsolyckor och ett flertal åtgärder har vidtagits eller håller på att vidtas för att ytterligare minska riskerna för att sådana olyckor skall inträffa.

Bedömningen är ändå att det inte helt går att kompensera den riskökning som en ökad trafik genom Östersjön och vidare genom Kattegatt och Skagerrak kommer att medföra. Dessutom finns inget som tyder på att den väntade trafikökningen, åtminstone inte på kort sikt, kommer att ske med fartyg som uppfyller kraven på bästa säkerhetsstandard. Snarare kan man av hittillsvarande erfarenheter dra slutsatsen att de fartyg som kommer att svara för den ökade trafiken i Östersjön är äldre och håller lägre säkerhetsstandard än exempelvis de fartyg som regelbundet trafikerar svenska hamnar.

Foto: IVL
Utvärderingar av de åtgärder som vidtagits för att minska antalet operationella utsläpp Östersjöområdet, liksom tillgänglig statistik över antalet faktiska utsläpp, visar att åtgärderna varit effektiva. Det är därför rimligt att anta att de risker som de många och ofta förekommande små operationella utsläppen hittills har medfört kommer att minska i betydelse i den sammanvägda riskbilden för svenska vatten under perioden fram till 2010. Som framgått tidigare är ett av delmålen i det nationella miljömålet för kust och hav att de olagliga oljeutsläppen skall ha upphört till år 2010.

Riskerna kan schematiskt sammanfattas på följande sätt:
1 = Operationella utsläpp
2 = Grundstötningar
3 = Kollisioner
4 = Lastning/lossning
5 = Brand/explosion
6 = Terrorhandlingar
7 = Olyckor vid offshore-installationer)

Som framgår av ovanstående figur bedöms de mycket sannolika riskerna för ett litet operationellt utsläpp att minska (ettan inramad av en nedåtriktad pil). Riskerna bedöms som oförändrade då det är fråga om utsläpp från lastning/lossning av fartyg (fyran utan inramning). På liknande sätt kan förändringar av riskerna som hänger samman med de andra händelserna i figuren bedömas och tolkas.
5 Mål för det svenska framtida oljeskadeskyddet

De förslag till mål och åtgärder för det framtida svenska oljeskadeskyddet som presenteras här har utarbetats mot bakgrund av nuvarande riskbild och bedömningarna av den framtida riskbilden beträffande olje- och kemikalieutsläpp i svenska vatten eller i havsområden som gränser till dessa. Förslagen grundas också på de erfarenheter som hittills vunnits inom den svenska oljeskyddsverksamheten. Två av de nationella miljömålen ligger till grund för nedanstående målsättningar för oljeskadeskyddet till havs och i de stora sjöarna.

5.1 Övergripande mål

Det övergripande målet för det svenska oljeskadeskyddet är att skydda svensk ekonomisk zon, svenskt sjöterritorium, Vänern, Vättern och Mälaren samt strandzonerna längs de svenska kusterna mot de skador som utsläpp av olja kan förorsaka på miljö och samhällsekonomiska värden.

Det övergripande målet för det svenska oljeskadeskyddet till år 2010 kan indelas i följande delmål:

- mål för förebyggande åtgärder,
- mål för oljeskadeskyddet till sjöss och de stora sjöarna,
- mål för oljeskadeskyddet i strandzonen,
- mål för den uppföljande verksamheten efter genomförda bekämpningsoperationer.

5.2 Mål

Mål för förebyggande åtgärder

Det övergripande målet för de förebyggande åtgärderna är att minimera riskerna för utsläpp av olja till sjöss. Målet består av följande delmål:

- Den process som påbörjats för att klassa Östersjön som särskilt känsligt havsområde (PSSA) bör vara avslutad till år 2007.
- De olagliga utsläppen av olja i svenska vatten skall i princip vara försumbara till år 2010.
- Det bör införas ett förbud för trafik i svenska vatten av enkelskrovsfartyg för frakt av alla typer av oljelaster.
- Ett effektivare samarbete bör byggas upp mellan de myndigheter som ansvarar för hamnstatskontrollen i Östersjöområdet.
- Efterlevandet av Östersjöstrategin om mottagningsanläggningar för avfall från fartyg (Baltic Strategy on Port Reception Facilities for Ship-generated Wastes) bör följas upp.
- Berörda svenska oljeskadeskyddsmyndigheter och organisationer bör genomföra regelbundna gemensamma övningar.
- Det internationella samarbetet vidareutvecklas.
Mål för oljeskadeskyddet till sjöss

Det övergripande målet för oljeskadeskyddet till sjöss är att ha förmåga att tidigt bekämpa utsläpp och genom effektiva bekämpningsinsatser påtagligt bidra till att minska de negativa effekterna på vattenmiljön och i strandzonen av allvarliga utsläpp. Målet bryts ner i följande delmål:

- Det skall finnas en ständig beredskap att leda och påbörja oljebekämpningsinsatser till sjöss.
- Fram till år 2010 skall kapaciteten för att bekämpa oljeförmåner till sjöss höjas från att som nu kunna bekämpa 5 000 ton olja vid ett och samma tillfälle till att kunna bekämpa 10 000 ton vid ett och samma tillfälle.
- Det bör snarast skapas kapacitet för att genom nödbogsering, nödläktering eller brandbekämpning kunna förhindra att olja kommer ut i vattenmassan då det föreligger akut risk för oljearstalllägg vid en fartygsolycka. Härvid skall också förmågan att omhänderta olja från ett fartyg som förs till en skyddad plats.
- Senast år 2007 skall det finnas kapacitet att genomföra bekämpningsoperationer oavsett siktförhållanden på vägen till och på olycksplatsen, liksom i isbemängda vatten.
- Internationellt operativt samarbete skall omedelbart kunna påbörjas vid större oljeutsläpp.
- Oljepåslåningen Seatrack Web skall fortsätta att utvecklas.

Mål för oljeskadeskyddet i strandzonen

Målet för oljeskadeskyddet i strandzonen är att ha förmåga att kunna bekämpa olja som kommer i land från utsläpp av olja och kunna sanera strandområden för att minimera de ekonomiska och sociala följderna samt miljoeffekterna av utsläppen. Målet bryts ned i följande delmål:

- År 2010 skall det finnas kapacitet att ta hand om påslag på 10 000 ton olja vid ett utsläpp på ett sätt som gör att det inte medför några långvariga miljöeffekter eller ekonomiska effekter.
- Senast till år 2007 skall miljöanpassade saneringsmetoder utvecklas.
- Senast till år 2007 skall en nationell, webbaserad miljöatlas för de svenska kusterna och de stora sjöarna utarbetas.
- År 2007 skall det finnas beredskapsplaner för oljeskadeskydd hos alla berörda svenska kommuner längs kusterna och runt de stora sjöarna.
- Senast år 2010 skall utbredningen av oljepåslag på stränderna ytterligare kunna begränsas och särskilt känsliga områden kunna skyddas.

Mål för uppföljning och utvärdering

Målet för den uppföljande verksamheten och utvärderingen är att till år 2006 ha utvecklat metoder för långsiktig uppföljning av miljöeffekter från oljepåslag. Likaså skall arbetet med att återföra erfarenheter från operativa insatser, och därmed utveckla kunskap och kompetens, intensifieras.
6 Åtgärder

6.1 Förebyggande åtgärder

Den process som påbörjats med att klassa Östersjön som särskilt känsligt vattenområde (PSSA) bör vara avslutad till 2007.

Åtgärdsansvar: Sjöfartsverket, Naturvårdsverket och Kustbevakningen.

De olagliga utsläppen av olja i svenska vatten skall i princip ha upphört till 2010.

Åtgärdsansvar: Kustbevakningen

Sverige skall arbeta mot ett förbud mot trafik i Östersjöområdet av fartyg med enkelskrov som fraktar olja.

Åtgärdsansvar: Sjöfartsverket.
Ett effektivare samarbete bör byggas upp mellan de myndigheter som ansvarar för hamnstatskontrollen i Östersjöområdet.

För att undvika eller minska de risker som är förenade med att undermåliga fartyg (sub-standard ships) trafikerar vattnen finns internationala överenskommelser om hamnstatskontroller. I Sverige har Sjöfartsverket åtagit sig att kontrollera en viss andel av ankommande fartyg som är registrerade i en annan flaggstat. Sverige arbetar för att alla stater kring Östersjön skall ansluta sig till Paris MoU om hamnstatskontroll.

- **Åtgärdsansvar:** Sjöfartsverket/Sjöfartsinspektionen

Efterlevnaden av Östersjöstrategin om mottagningsanläggningar för avfall från fartyg skall följas upp.

Sverige skall genom det internationella samarbetet med Östersjöstaterna driva på de insatser som syftar till att säkra att det finns mottagningsanläggningar för alla typer av fartygsgenererat avfall i hamnarna i Östersjöområdet.

- **Åtgärdsansvar:** Sjöfartsverket.

Berörda svenska oljeskadeskyddsmyndigheter och kommuner skall genomföra regelbundna gemensamma övningar.

Räddningsverket, Kustbevakningen, Sjöfartsverket, kommuner/länsstyrelser och Naturvårdsverket behöver ha ett fortsatt nära och integrerat samarbete för att garantera ett väl fungerade nationellt oljeskadeskydd. Såväl teoretiska (skrivbordsövningar) som praktiska övningar skall hållas regelbundet.

- **Åtgärdsansvar:** Berörda myndigheter och kommuner.

Det internationella samarbetet skall vidareutvecklas.

Sjöfart är en i allra högsta grad internationell verksamhet. Svenska myndigheter bör verka kraftfullt i det internationella arbetet om sjösäkerhet och transportsäkerhet för att förhindra utsläpp av olja. EU:s arbete med att utveckla rutiner och arbetssätt inom sjöfartsområdet har hög prioritet, liksom det arbete som bedrivs inom HELCOM.

- **Åtgärdsansvar:** Kustbevakningen och Sjöfartsverket.

6.2 Åtgärder för oljeskadeskydd till sjöss

Beredskap och kapacitet att bekämpa oljeutsläpp skall ökas.

Enligt den inriktning som nu gäller för svenskt oljeskadeskydd till havs och i de stora sjöarna skall det sammantaget finnas beredskap att på mekanisk väg vid ett och samma tillfälle kunna bekämpa oljeutsläpp på upp till 5 000 ton. Med tanke på att storleken på de oljetransportande fartygen ökat – en tank på en stor oljetanker innehåller mellan 10 000 och 20 000 ton olja – bör detta mål ändras. Förutom att optimera insatstiden och förmågan att bekämpa en viss volym olja som släpps ut i vattnet, är det även viktigt att genom läktrin av olja från ett fartyg till ett annat, bistånd med brandsläckning till sjöss och nödbogsering etc. kunna förhindra att oljan över huvudtaget kommer ut i vattnet. Detta kan åstadkommas genom hög beredskap till sjöss, framför allt i högriskområden samt genom ökad närvaro i och anslutning till särskilt känsliga områden. Förmågan att genom-
föra nödbogsering, nödläktring och brandbekämpning, samt att genomföra bekämpningsoperationer oavsett siktförhållanden och i is, bör säkerställas genom slutförandet av pågående utvecklingsprojekt inom Kustbevakningen. Möjligheterna att omhänderta olja från ett fartyg som förtills till en skyddad plats skall utvecklas.

• **Åtgärdsansvar:** Kustbevakningen.

Det internationella samarbetet skall vidareutvecklas.

Förutom att på nationell nivå ha tillgång till ändamålsenlig utrustning och kunna hålla en hög beredskap, bör förmågan att bekämpa stora oljeutsläpp säkerställas genom ett effektivt internationellt samarbete i Östersjön och i Västerhavet (Kattegat och Skagerack). Det samarbete som sker inom ramen för bland annat Bonnavtalet, Köpenhamnsavtalet och Helsingforskonventionen utgör en god grund för detta samarbete. Inom EU vidtas åtgärder för att stärka samarbetet och utöka förmågan att ta hand om incidenter med stor potential. Sverige bör, genom att delta mycket aktivt i arbetet inom dessa organisationer, driva samarbetet ytterligare framåt.

• **Åtgärdsansvar:** Kustbevakningen och Räddningsverket

Oljespridningsmodellen Seatrack Web skall utvecklas.

Spridningsmodellen Seatrack Web bör ha högre upplösning beträffande strömningsdata än vad som är fallet i dag. Systemet bör också utvecklas så att det blir möjligt att göra beräkningar som tar hänsyn till de specifika egenskaperna hos olika oljor. I modellerna bör även isförhållanden läggas in och beskrivningarna av turbulens vidareutvecklas.

• **Åtgärdsansvar:** Kustbevakningen och Räddningsverket

6.3 Åtgärder för oljeskadeskydd i strandzonen

En nationell, webbaserad miljöatlas för de svenska kusterna och de stora sjöarna skall utarbetas och tas i bruk.

• **Åtgärdsansvar:** Naturvårdsverket, IVL Svenska Miljöinstitutet och berörda länsstyrelser

Aktuella beredskapsplaner skall finnas i samtliga berörda kommuner och län.

Det bör senast till år 2007 finnas regionala beredskapsplaner för samtliga län. De regionala planerna utarbetas i samverkan mellan kommuner och länsstyrelse och skall bygga på de befintliga kommunala planerna. Tillsammans med den nya miljöatlasen kommer planerna att utgöra grunden för bedömningar av lämpliga åtgärder vid bekämpning och sanering då det finns risk för oljepåslag i strandzonen. Kommunerna skall också upprätta
planer för omhändertagande av den olja och det oljehaltiga avfall som samlas upp. Dessa planer skall hållas aktuella. Övningar i samverkan mellan Kustbevakningen, Räddningsverket, kommuner och länsstyrelser bör hållas regelbundet för att säkerställa beredskapen för påslag av olja kemikalier och underlätta att nödvändiga åtgärder sätts igång snabbt.

- **Åtgärdsansvar:** Samtliga berörda myndigheter och kommuner.

Miljöanpassade metoder för sanering av olja i strandzonen skall utvecklas.
Miljöanpassade saneringsmetoder behöver utvecklas senast till år 2006. Alla kommuner bör ha tillgång till och kunskap om handboken om sanering.

- **Åtgärdsansvar:** Räddningsverket, Kommunförbundet och Naturvårdsverket

I lagstiftningen om farligt avfall bör det medges undantag för att göra det lättare att ta hand om oljeförorenat material.
Lagstiftningen om farligt avfall bör ses över senast till år 2006 så att det blir lättare att lokalt ta hand om material från stränderna som innehåller mindre mängder oljeföroreningar.

- **Åtgärdsansvar:** Räddningsverket och Naturvårdsverket

Det nationella oljeskadeskyddet i strandzonen skall ses över.
Inriktningen på Räddningsverkets beredskap, liksom den kapacitet som finns, bör ses över mera i detalj. Detta bör göras senast till år 2006 i samband med att förrådsstrukturen förändras genom att man kommer att ha två basförråd med ansvar för sanering samt räddningstjänstinsatser och tre förråd som har ansvar för räddningstjänstinsatser och mindre saneringsinsatser.

- **Åtgärdsansvar:** Räddningsverket

6.4 Åtgärder för uppföljande verksamhet

Metoder behöver vidareutvecklas för att följa upp och bedöma konsekvenser av oljepåslag och oljesanering.

- **Åtgärdsansvar:** Räddningsverket och Naturvårdsverket

Gemensamma uppföljningar skall göras efter större oljepåslag och saneringar.
Varje myndighet skall utvärdera sin egen liksom den gemensamma insatsen i syfte att utveckla förmågan och samarbetet.

- **Åtgärdsansvar:** Alla berörda myndigheter
7 Bakgrund och fakta

7.1 Vad händer med olja i vatten?

Vilka egenskaper olja har och vad som händer med dem när de kommer ut i miljön beror på vilken typ av olja eller oljeprodukt det är fråga om.

Egenskaper hos olika oljor

Råoljor består av naturligt förekommande och av naturen skapade komplexa blandningar av organiska ämnen. När råolja utvinns ur källan består den av många tusen olika kemiska komponenter. Ingen råolja är den andra lika, utan dess fysikaliska egenskaper och kemiska sammansättning varierar från fyndighet till fyndighet och även mellan olika djup i samma källa. Så är exempelvis olja från Nordsjön relativt lätt och avdunstar snabbt, medan tunga råoljor är trögflytande, stelnar snabbt och dunstar obetydligt vid vanliga temperaturer.

Destillerade oljor har mer väldefinierade egenskaper, eftersom de framställs genom destillation (raffinering) av råolja eller genom kemiska processer. Destillering innebär att råolja hettas upp och att de olika komponenterna skiljs åt (fraktioneras) efter sina respektive kokpunkter. Kemisk framställning av oljeliknande ämnen kan exempelvis ge vegetabiliska och syntetiska oljor.

Typerna av olja och dess kemiska sammansättning (andelen av olika typer av kolväten), tillsammans med yttre förhållanden såsom vatten- och lufttemperatur samt vågors energi, bestämmer hur oljan beter sig i miljön. Detta påverkar i sin tur möjligheterna att bekämpa ett oljeutsläpp till sjöss. De olika egenskaperna hos oljan är av särskilt stor betydelse vid oljebekämpning, men egenskaper är inte oberoende av varandra. Så har exempelvis oljans viskositet, alltså hur trögflytande den är, stor betydelse för spridning och pumpbarhet. Oljans emulgeringsförmåga påverkar i sin tur dess viskositet och flytförmåga.

Spridningsförmåga. Lätta (lågviskösa) oljor sprider sig snabbt över stora ytor och bildar tunna skikt som kan göra det svårt att med tillgänglig utrustning för oljeupptagning effektivt ta upp sådana oljor ur vattnet. Om det är fråga om mycket tunna oljeskikt kan upptagning visa sig vara helt omöjligt. Tjockare (högviskösa) oljor har betydligt mindre förmåga att sprida sig. De omvandlas i stället ofta till klumpar eller sjok som är lättare att samlas upp.

Viskositet. Oljans trögflutenhet påverkas av dess förmåga att avdunsta, dess löslighet och emulgeringsförmåga. Dessa processer påverkas främst av typen av olja, vattnets temperatur samt vägrörelserna i havet.

Emulgeringsförmåga. När en vätska finfördelas i en annan vätska till mycket små droppar kallas detta emulsering och det bildas en emulsion. I fråga om olja kan det röra sig om olja-i-vatten-emulsion, s.k. naturlig dispergering, eller vatten-i-olja-emulsion s.k. mousse. Emulgerings-

Oljan kan också föröra sin flytförmåga på grund av att den tar upp vatten eller fasta partiklar (t.ex. sand eller annat bottensediment). Detta kan inträffa vid grundstötingar, då olja pressas ut mellan fartygsskrovet och havsbotten. Skillnaden i täthet mellan vatten och olja/oljerester är ofta liten. På grund av detta, och beroende på temperaturförhållanden, salthalt och skiktning mellan vattenmassor med olika egenskaper, kan oljeperlklumpar och oljerester hålla sig flytande under relativt lång tid. Sådan olja är i det närmaste omöjlig att såväl upptäcka som bekämpa.

Oljans flytförmåga påverkas också av vågrörelserna i havet. Vid brytande sjök blanderas oljan ner i vattenmassan och blir på så sätt inte åtkomlig för oljeupptagare.

Pumpbarhet. Om oljan är mycket trögflytande och därmed inte pumpbar, blir tillgängliga oljeupptagare begränsat effektiva för bekämpning. Tillgången på användbara metoder för upptagning och överpumpning av oljan blir också begränsat.

Fasta föroreningar. Ju större innehåll oljan har av fasta föroreningar, desto mer begränsas möjligheterna att pumpa oljan eller använda upptagare. Pumparna kan sättas igen av tång och annat material, eller havererar på grund av att metallföremål dras in i dessa.

Så förändras olja i vattnet

Hur oljan förändras beror också på om utsläppet skett i havet eller i en sjö. Dels påverkas oljan olika i ett salt/bäckt vatten och i ett sött vatten, dels är förhållandena olika mellan ett havsområde och en stor insjö vad gäller t.ex. vindar, vågor och ombländningsprocesser i vattnet.

Oljans fysikaliska och kemiska förändring bestäms i hög grad av hur oljan fördelas i vattennivån – hur tjockt oljeskiktet är, hur oljan blandas ner i vattenmassan samt hur oljan driver mot land. Förr eller senare driver en del, ibland bara små volymer, av all olja som kommer ut i havet in mot kusterna och lägger sig på stränderna.

Oljan påverkas fysikaliskt, kemiskt och biologiskt av bland annat solljus, syre, vågor, is och mikroorganismer. Resultatet är att oljan dels fördelas i miljön och dels bryts ner i olika grad.

Biologisk nedbrytning. Det finns mer än hundra kända mikroorganismer i salt- och sötvatten som har förmåga att bryta ned kolväten till enklare kolväten eller till koldioxid och vatten (biodegradation). Nedbrytningshastigheten beror på temperaturen och tillgången på syre och närsalter (främst kväve och fosfor).

De biologiska nedbrytningsprocesserna verkar främst på oljans lättare beståndsdelar. Denna del av oljan bryts ner till komponenter som löses i vattnet och som därigenom försvinner. Det som blir kvar av oljan får därmed högre täthet och kan på sikt sjunka till botten. Eftersom tillgången till syre är begränsad vid bottomen, kommer den biologiska nedbrytningen av dessa tyngre oljerester att avta eller helt upphöra.

Tidigare har man ansett att biologisk nedbrytning av olja går långsamt eller nästan inte alls fungerar i kalla vatten. Erfarenheterna från exempelvis olyckan med Exxon Valdez i Alaska har emellertid visat att det också i dessa kalla vatten finns mikroorganismer som har en mätbart nedbrytande effekt på olja.

Beräkningar av takten i den naturliga biologiska nedbrytningen varierar från cirka 0,03 gram olja per ton havsvatten och dygn till maximalt 60 gram olja per ton havsvatten och dygn i kroniskt oljeförorenade vattenområden. Erfarenheterna har visat att nedbrytningen styrs av oljans exponeringsytan mot mikroorganismer samt tillgången på syre, kväve och vatten.
Påskyndad biologisk nedbrytning av olja i strandzonen. Med lämpligt substrat och optima
tillväxtförhållanden kan en population av mikroorganismer, exempelvis bakterier, anpassa sig till
en ny miljö på några dagar. Anpassningen bestäms av typen av bakterier, bakteriekulturens älder
samt tillgången på näringsämnen och fuktighet. Därefter vidtar en tillväxt, som kännetecknas av
en exponentiell ökning av antalet mikroorganismer. Så småningom minskar tillväxttakten igen
och förökningen blir nästan obefintlig på grund av en tilltagande brist på näringsämnen, otill-
räcklig tillgång till syre eller anhopning av giftiga biprodukter. Under den sista fasen dör mikro-
organismerna om det inte går att återskapa en tillväxtbefrämjande miljö.

En anpassningsperiod är absolut nödvändig vad gäller tillförsel av både näringsämnen och
mikroorganismer. Denna period blir kortare om mikroorganismerna redan har kommit i kontakt
med den olja som skall brytas ned. Den mikrobiella nedbrytningsförmågan bestäms av den
anpassningstid som mikroorganismerna behöver för att kunna börja föröka sig. Den biologiska
nedbrytningen blir därför kanske inte börjar förrän 3–5 dagar efter att man tillför mikroorganismera
till det oljeförorene området eller stimulerat tillväxten hos redan närvarande organismer.

Eftersom mikroorganismerna behöver denna anpassningstid kan man inte ta till påskyndad
biologisk nedbrytning som första saneringsåtgärd. I de fall det krävs snabba insatser, till exempel
om utsläppet skett i kustnära vatten i närheten av ekonomiskt värdefulla stränder eller hotar
viktiga naturområden, måste andra bekämpningsmetoder användas.

Påskyndad biologisk nedbrytning passar bäst på stränder som är lätt förorenade av olja. Oljans
koncentration, inklusive effekten av utspädningen, och oljans form (tjärklumpar, slam) påverkar
i hög grad effekten av den biologiska nedbrytningen. Oljan kan vara så koncentrerad att den blir
giftig och därigenom bromsar nedbrytningen. Om stränder blivit kraftigt förorenade kan
oljan eller dess nedbrytningsprodukter på detta sätt vara tyngre än vattnet och börja tillgripas av
oljeförorenade området eller stimulerat tillväxten hos redan närvarande organismer.

Fotooxidation. Kolvätena i oljan kan reagera med syret i luften eller vattnet. Vissa av dessa
oxidationsprocesser underlättas och påskyndas av ultraviolett ljus, som är en komponent i
solljuset. Denna kombinerade process kallas fotooxidation.

Eftersom syret bara kan reagera med oljan på oljesiktets yta, oxideras
oljen snabbare än tjockare. Oljor med högre svavelinnehåll har
mindre benägenhet att oxideras, medan vissa metaller som förekommer i
oljan (t.ex. vanadin) kan fungera som katalysatorer och påskynda oxidations-
processen.

Sedimentation. Förändringsprocesserna leder till att oljans specifika vikt
ökar. Om oljan eller dess nedbrytningsprodukter på detta sätt blir tyngre än
vattnet, sjunker oljerester till botten. Inblandning av sand och andra partiklar kan också leda till
att oljerester eller oljepartiklar blir tyngre och sedimenterar.
7.2 Effekter av olja på växter, djur och stränder

Olja och dess nedbrytningsprodukter orsakar såväl akuta gifteffekter som långsiktiga effekter i vattenmiljön. Från ekologisk synpunkt är de långsiktiga effekterna sannolikt allvarligast. Skadorna omfattning beror främst på typen av olja, volymen olja, utsläppets varaktighet, årstid, väderförhållanden, samt då oljan driver i land, vilken typ av strand eller botten som drabbas. Här beskrivs endast effekter på växter och djur i havsmiljö och effekter på havsstränder.

Exempel på akuta gifteffekter är att kolväten i oljan som löses i vattnet kan döda eller skada plankton (växter och djur som svävar fritt i vattenmassan), ägg, yngel och vuxen fisk. Andra vattenlevande organismer kan drabbas av biologisk stress. De upplösta komponenterna späds snabbt ut till koncentrationer som ligger under den nivå där akuta gifteffekter inträffar, men dessa kolväten kan ändå tas upp av levande organismer och påverka deras fysiologi, beteendemönster, fortplantningsförmåga och långsiktiga överlevnad. Även om oljan omedelbart efter ett utsläpp kan orsaka omfattande skador på planktonorganismerna inom det aktuella området, tycks dessa, i allmänhet kortlivade organismer, återhämta sig snabbare än växter och djur som lever på bottornas och stränderna.

Undersökningar av oljeförorenade områden visar att effekterna på organismerna som lever i bottensedimenten kan kvarstå under så lång tid som 10–20 år. Undersökningarna av de långsiktiga miljöeffekterna av oljeutsläpp – effekter under mer än fem år efter utsläppet i har i huvudsak koncentrerats till utsläpp större än 1 000 ton. Internationellt är det främst de stora olyckorna med Torrey Canyon (100 000 ton utsläppt olja), Amoco Cadiz (223 000 ton utsläppt olja), Exxon Valdez (36 000 ton utsläppt olja), Braer (87 000 ton utsläppt olja), Sea Empress (70 000 ton utsläppt olja) samt Erika (13 000 ton utsläppt olja) som varit eller är föremål för studier och uppföljning av långsiktiga miljöeffekter. Sannolikt kommer motsvarande undersökningar nu att göras av effekterna av det stora oljeutsläppet från Prestige.

Döda oljeskadade fåglar är ofta det första och mest påtagliga tecknet på skada i samband med ett oljeutsläpp. Sjöfåglar som drabbats hårt av oljeutsläppen i Östersjön är alfågel, sillgrissla, tordmule och lom. Även andra fågelarter utsätts emellanåt för olja beroende på var och när oljeutsläppet sker. Ett oljespill kan påverka fågeln genom direkt fysisk kontakt med oljan och/eller genom att fågeln får i sig olja via födan (förgiftning). En oljeförorenad fjäderdräkt förlorar sin vattenavvisande och värmeisolerande förmåga. I kalla klimat kan det räcka med en oljefläck på bara 2–3 cm² för att en fågel skall dö. Fåglar kan också dö på grund av att de andas in små oljedroppar. Lunginflammation, inre blödningar i tarmar eller lungor, samt lever och njurskadador är exempel på sådana inre skador.

Tvätt av oljeskadade fåglar

Sälar och valar verkar försöka undvika havs- eller strandområden där det finns olja. På samma sätt verkar landlevande däggdjur föröka undvika strandavsnitt som smutsats ner av olja och klarar sig därför ofta relativt bra från oljan. Dock kan exempelvis sälar andas in ängor och skadas. Havsuttrarna som lever i tångskogar dabbades mycket hårt av utsläppet från Exxon Valdez.

De flesta registrerade utsläppen av olja är små, varför oljan avdunstar, dispergerar (finfördelas i vatten) eller bryts ned relativt snabbt. Miljöpåverkan från dessa utsläpp är därför mycket svåra att mäta. Mycket få undersökningar har gjorts för att förtysera och mäta de totala miljöeffekterna av ett stort antal små oljeutsläpp från många olika typer av källor under lång tid.

En oljetyp som bedöms öka i omfattning är s.k. Orimulsion, som kan beskrivas som en blandning av högdensitiva oljegranulat i vatten (70 procent bitumen och 30 procent vatten). Effekterna av ett utsläpp av denna produkt skiljer sig avsevärt från andra oljetyper. Ett utsläpp av Orimulsion dispergeras i stor utsträckning i vattnet och bildar ingen oljefilm på ytan. Eftersom de giftiga komponenterna i Orimulsion blandar sig med vatten ökar risken för gifteffekter på de organismer i vattnet som typ av olja jämfört med exempelvis eldningsoljor. Även mindre känsliga vattenlevande organismer kan skadas om de utsätts för Orimulsion. Eftersom Orimulsion lätt dispergeras i vatten är dock effekterna inte så långvariga, utan ekosystemet återhämtar sig fortare.

Miljöeffekterna av några stora olje- och kemikalieutsläpp från fartygsolyckor

Torrey Canyon: Grundstötning vid Cornwall i Storbritannien år 1967 med ett oljeutsläpp på ca 100 000 ton råolja. Vid bekämpningen av oljan användes stora mängder dispergeringsmedel av äldre typ, som var betydligt giftigare än dagens medel. Detta ledde till att effekterna i miljön blev mycket allvarligare och mer långvariga än vad som blivit fallet om man avstått från att använda sådana medel. Det dröjde exempelvis mer än 10 år innan ekosystemen på hårdbottnarna (klippkust) hade återhämtat sig.

Amoco Cadiz: Grundstötning utanför Bretagne i Frankrike är 1978 med ett oljeutsläpp på drygt 220 000 ton lätt råolja från Persiska viken. Utsläppet ägde rum på grunt vatten i mycket hårt väder. En ca 360 km lång kuststräcka påverkades. Det mesta av oljan dispergerades naturligt och blandades in i uppvirvlat bottensediment. Detta fick bl.a. till följd att de ekonomiskt viktiga ostvandringarna sloggs ut för lång tid framåt samt att det under de första två åren efter olyckan förekom hög frekvens av fenröta hos plattfisk.

Exxon Valdez: Grundstötning i Prince William Sound i Alaska är 1989 med ett oljeutsläpp på ca 36 000 ton råolja från Alaska. Omkring 5 000 km av kusten förorengades. På de mest utsatta platserna låg oljan i centimeterjocka lager.
7.3 Effekter av olja på människors hälsa och säkerhet

Vid riskbedömningar av oljeutsläpp bör man även beakta hur människors hälsa och säkerhet påverkas. Detta gäller både vid bedömningar av den arbetsmiljö som oljesanerare utsätts för och kvaliteten på närmlifet för befolkningen i områden som drabbas av oljepåslag. Eftersom hälsa är ett i lagstiftningen otydligt definierat begrepp är det svårt att genomföra miljökonnekvens-

bedömningar som gäller människors hälsa. Det finns i dag stora luckor inom detta område. För att kunna bedöma hur människors hälsa påverkas av direkt eller indirekt kontakt med olja är det
viktigt att undersöka vilken exponering som kan leda till risk för skada samt att skaffa in information om vilka människor som kan påverkas. Viktiga frågor är hur oljeföroreningarna kommer att påverka människors hälsa på kort och lång sikt och om det finns känsliga grupper i befolkningen som kan påverkas vid lägre nivåer.

7.4 Vad händer och vem gör vad vid ett oljeutsläpp i svenska vatten?

En grundstötning eller en kollision mellan två fartyg är vanliga orsaker till olyckor till sjöss med åtödlande oavsiktligt oljeutsläpp. Brand ombord är ett annat exempel på fartygsolycka som kan leda till oljeutsläpp. Av scenariebilden framgår vilka insatser vid en olycka som görs av Sjöfartsverket, Kustbevakningen, berörd(a) kommun(er) och länsstyrelse(r), Naturvårdsverket och IVL Sverige Miljöinstitutet, samt Räddningsverket, respektive den samverkan som sker dem emellan. Framgångsrikt oljeskadeskydd kräver samverkan mellan de många inblandade aktörerna i en bekämpningsoperation.

Olika oljeutsläppssituationer till sjöss

Ett fartyg pumpar avsiktligt ut förorenat slagvatten. Denna typ av medvetet operationellt utsläpp är den allra vanligaste olyckans orsaken till oljeutsläpp till sjöss. Utsläppen av slagvatten från rengöring av oljeförorenade utrymmen ombord är normalt mycket små (oftast mindre än 100 liter olja) och går sällan att bekämpa. Olja spills ut vid överbunkring eller läckring när fartyget är förankrat på reden eller ligger i hamn. Dessa oljor sker vanligen i hamnar eller vid oljeterminaler i samband med hantering av lasten mellan stillaliggande fartyg eller fartyg och utrustning på kajen. Utsläppen får oftast begränsad omfattning, dels för att de sker i en hamnhöjning eller på annat sätt nära land, dels för att alla fartyg skall vidta särskilda åtgärder ombord (t.ex. täning så att olja inte kan röra av däcket ner i vattnet) för att begränsa utflödet av olja i vattnet.
Sjöfartsverket

Sjöfartsinspektionen vid Sjöfartsverket ingriper omedelbart vid fartygsolyckor i svenska farvatten. En eller flera fartygsinspektörer sänds från närmaste inspektionsområde (Stockholm, Göteborg eller Malmö) till olycksplatsen. Inspektionsområdena har jour dygnet runt. Fartygsinspektören har till uppgift att förhindra eller begränsa oljeutflödet från skadade fartyg och skall därvid

- bedöma risken för brand eller annan tänkbar fara ombord,
- inventera inträffade skador på fartyget,
- bedöma sannolika tekniska risker för fartyget, såsom nedsatt hållfasthet, stabilitet och flytbarhet;
- bedöma huruvida fartygets last eller hela fartyget kan flyttas från platsen;
- meddela anvisningar, föreläggande eller förbud gällande fartyget, läktring av lasten och/eller förflyttning av fartyget.

Kustbevakningen

En av de viktigaste uppgifterna för Kustbevakningens räddningsledare vid en oljeolycka är att snabbt bilda sig en uppfattning om hur oljan sprits på vattentan (utbredning) och hur oljan driver i väg från området. Spridningen av oljan kartläggs med hjälp av flygspaning och driften beräknas med hjälp av spridningsmodeller, där strömmar och vindar är de viktigaste faktorna.

Den olja som sprids till sjöss måste tas om hand så fort som möjligt och målet är att förhindra att oljan sprids in i skärgårdsområden. Särskilt skyddsvärda kustområden – t.ex. fågel- eller sällskyddsområden – måste kunna skyddas. Om olja ändå kommit in i skärgården skall spridningen kunna begränsas även i grunda vatten och vikar, vilket sker i samarbete med kommunens räddningskår.

Kustbevakningens räddningsledare med sin stab informerar och samverkar med de län eller kommuner som bedöms komma att beröras av utsläppet. En underhållslös sätts upp i en lämplig hamn i närheten av olycksplatsen för att kunna förse enheterna till sjöss med erforderliga resurser.

Samarbete mellan Sjöfartsverket och Kustbevakningen i detta första skede

Ombord på det olycksdrabbade fartyget samarbetar befälhavaren och representanter för Sjöfartsinspektionen för att rädda själva fartyget och för att förhindra oljeutsläpp. Även Kustbevakningens räddningsledare samverkar i detta skede för att förhindra oljeutsläpp; det är ofta Kustbevakningens länspumpar och läktringsutrustning som används. Också representanter för fartygets rederi och försäkringsbolag, samt klassificeringssällskap kontakts på detta stadium.

Om olja redan kommit ut i vattnet, samarbetar Kustbevakningens räddningsledare med bl.a. Sjöfartsverket, länsstyrelsen i det aktuella området samt Luftfartsverket för att ordna avspärrning av vatten- och luftrom i olycksområdet.
Kommunen

Kommunen påbörjar insatsen, eventuellt med stöd av Räddningsverkets mobila regionala oljeskyddsförråd. Man försöker allra först med sådana mekaniska hjälpmedel som länsor att styra oljan till mindre skyddsarmerade områden längs kusten, skydda stränderna med dukar och länsor och därefter hindra att inlandfluten olja sprids vidare.

Olja som når land kan spridas och föröra stora områden. Därför krävs betydande resurser i form av personal, materiel och underhåll (system för transporter, förplägnad o.s.v.). Detta arbete leds av en kommunal räddningsledare med stab.

Samarbete mellan Kustbevakningen, Sjöfartsverket, Räddningsverket, Naturvårdsverket/IVL Svenska Miljöinstitutet, länsstyrelser, kommuner, polisen och Försvarsmakten
Kustbevakningen kontaktar larmcentralen, som larmar kommunen som i sin tur larmar Räddningsverkets för utnyttjande av verkets föränd så snart det står klart att ytterligare stöd behövs i form av utrustning och utbildad personal. Verket skall också kontakta för skadeinventeringen, även om ingen utrustning skall skickas till platsen.

Vid behov av expertis i fråga om miljöeffekter av oljan och val av mest miljöskonande bekämpnings- eller saneringsmetod kan räddningsledare och andra ansvariga inom Kustbevakningen respektive kommunen få hjälp av länsstyrelsen, Naturvårdsverket samt oljejouren vid IVL Svenska Miljöinstitutet.

Kustbevakningen samverkar också med länsstyrelsens miljövårdsenhet för att ta prover på oljan och i möjligaste mån planera skydd av känsliga kuststräckor och vattenområden.

I syfte att utreda om brott ligger bakom olyckan och därmed oljeutsläppet samarbetar ofta Sjöfartsinspektionen, Kustbevakningen, Statens kriminaltekniska laboratorium och polisen.

För att på bästa sätt utnyttja samhällets samlade resurser för oljeskadestydd samverkar Kustbevakningens och kommunernas räddningsledare, Sjöfartsverket, Räddningsverket, länssty-
relsen och Försvarsmakten. Relevanta resurser kan också ställas till förfogande av t.ex. marinen och Sjöräddningssällskapet.

Vid större oljeolyckor finns även representanter för Internationella oljeskadefonden och International Tanker Owners Pollution Federation (ITOPF) närvarande som rådgivare och kontrollanter.

7.5 Internationella konventioner och avtal samt övrigt internationellt samarbete

FN:s internationella arbetsorganisation (ILO) behandlar frågor som berör sjöfarten, exempelvis de ombordanställdas sociala förhållanden. ILO arbetar för närvarande med frågor om arbetstider och om trötthet som en riskfaktor för fartygsolyckor.

Internationella avtal och regler för sjöfart och oljetransporter

- 1969 års konvention om ingripande på det fria havet vid olyckor som kan befaras leda till förorening genom olja (Ingreppskonventionen, INTERVENTION).
- 1971 och 1992 års konvention om en internationell fond för kompensation för oljeskada (Fondkonventionen, FUND).
- 1972 års konvention om internationella regler för förhindrande av kollisioner till sjöss (COLREG).
- 1973 års konvention rörande förhindrande av förorening från fartyg samt 1978 års protokoll till konventionen (MARPOL 73/78).
- 1978 års konvention angående normer för sjöfolks utbildning, certifiering och vakthållning (STCW).
- 1982 års avtal om hamnstatskontroll.
- 1990 års konvention om oljeskydds bistånd (OPRC).
- 2001 års Bunkerkonvention om ersättningar för föroreningsskador vid utsläpp av bunkerolja

Regionala och nordiska avtal och regler samt samarbete för att skydda den marina miljön
- Nordiskt räddningstjänstavtal.
- 1974 års nordiska miljöskyddskonvention.
- 1991 års konvention om miljökonsekvensbeskrivningar i ett gränsöverskridande sammanhang (Esbokonventionen).
- 1992 års konvention för skydd av den marina miljön i Nordostatlanten (OSPAR-konventionen).
- 1992 års konvention om skydd för Östersjöområdets marina miljö (Helsingforskonventionen).
- Arktiska Rådet 1996 (Arktiska miljöskyddsstrategin).

1969 års internationella konvention om ingripande på det fria havet vid olyckor som befaras leda till förorening genom olja: International Convention Relating to Intervention on the High Seas in Cases of Oil Pollution Casualties
Ingreppskonventionen definierar kuststaternas befogenheter att på det fria havet ingripa mot utländskt fartyg för att förebygga förorening genom olja på grund av fartygsolycka eller för att begränsa skadeverkningarna av sådan förorening. I konventionen slås fast att stat har rätt att på det fria havet vidta nödvändiga åtgärder för att förebygga, minska eller avvärja allvarlig och överhängande fara, som förorening genom olja medför för statens kuster. Även hot om sådan förorening ger stat rätt att ingripa.

Ansvarighetskonventionen innehåller regler om skadeståndsskyldighet för oljeskador till sjöss. Enligt konventionen är ägare av varje fartyg som fraktar olja (råolja, eldningsolja, tjock dieselolja eller smörjolja) som last (bulklast) skyldig att oberoende av vållande ersätta föroreningsskada orsakad av olja som härrör från fartyget. Ägarens ansvar för en och samma olycka är begränsat per ton av fartygets dräktighet, s k ansvarston. Dessutom gäller ett högsta ersättningsbelopp per olycka.

Oljeskadefonden är en internationell fond för ersättning av skada som orsakas av förorening genom olja som fraktar till sjöss. Avgifter till oljeskadefonden (varav Sverige står för ca två procent) betalas vanligen av sådana oljebolag och organisationer i konventionens medlemsstater, som årligen tar emot mer än 150 000 ton råolja eller tjock eldningsolja efter sjötransport. I några fall kan även medlemsstaten betala avgiften och sedan debitera de företag inom landet som är de faktiska mottagarna (men detta är undantagsfall). Oljeimporterande stater. Fonden kompletterar bestämmelserna i ansvarighetskonventionen och ger ytterligare ersättning för oljeskador, när den ersättning som erhålls enligt ansvarskonventionen är otillräcklig. Även oljefondens ersättningsbelopp är begränsade. Det utgår inga medel ur Internationella oljeskadefonden för att göra långsiktiga undersökningar av miljöeffekter om oljeutsläpp i den marina miljön. Sådana undersökningar måste bekostas av staterna själva.

Syftet med MARPOL-konventionen är att avsiktliga otillåtna utsläpp av olja, kemikalier, toalettabfall och hushållsavfall från fartyg till havs eller i hamn skall förebyggas och slutligen helt upphöra, liksom att utsläppen av olja och kemikalier i samband med olyckor skall minimeras. MARPOL är en s.k. ramkonvention, som efter hand byggts på med sex Annex vari mer speciella regler läggs fast om

- olja (Annex 1),
- kemikalier i bulk (Annex 2),
- bl.a. kemikalier som transporteras i paketerad form (Annex 3),
- toalettabfall (Annex 4),
- fast avfall som exempelvis hushållsavfall (Annex 5),
- luftförøoreningar från fartyg (Annex 6).

Både Östersjöområdet och Nordsjöområdet (inklusive Skagerrak) är s.k. specialområden (Special Area) enligt MARPOL Annex 1. I specialområden gäller särskilt stränga regler för olika typer av utsläpp från fartyg, inklusive utsläpp av olja och oljehaltigt avfall. Status som specialområde kan ges till havsområden som på grund av sina speciella oceanografska och ekologiska förhållanden anses vara extra känsliga för olika typer av störningar/utsläpp m.m. Länderna som omger ett specialområde skyldiga att se till att det i hamnarna finns tillräcklig kapacitet i form av mottagningsanläggningar (fasta eller mobila) till vilka fartygen skall kunna lämna oljeförorenat ballastvatten och annat oljehaltigt avfall.

För oljeutsläpp från fartyg som befinner sig inom ett specialområde gäller följande särskilda regler (se MARPOL Annex 1 och Sjöfartsverkets föreskrifter):

Utsläpp från fartygens lastdel (inklusive pumprum och ballasttankar)

- Utsläpp av olja och oljehaltiga blandningar från lasttankutrymmen, inklusive pumprum, liksom av oljehaltigt ballastvatten är förbjudet. Sådant avfall skall lämnas till mottagningsanläggningar i hamn.
Utsläpp av oljehaltigt länsvatten är tillåtet under förutsättning att samtliga nedanstående krav uppfylls:

- att länsvattnet inte kommer från lastpumprum,
- att länsvattnet inte är blandat med oljelastrester,
- att fartyget vid utsläppet är under gång,

Samtliga svenska farvatten omfattas av bestämmelserna för specialområden. Dessa regler gäller därför samtliga svenska och främmande fartyg som befinner sig inom svensk ekonomisk zon samt för svenska fartyg som befinner sig i andra specialområden enligt MARPOL (t.ex. Antarktis, där alla typer av oljeutsläpp är förbjudna).

Flertalet havsområden är emellertid inte klassade som specialområden och för icke specialområden enligt MARPOL gäller de generella utsläppsreglerna i konventionens annex.

Följande regler enligt Annex 1 om olja gäller således för svenska fartyg varhelst de befinner sig på världshavet utanför specialområden:

Utsläpp av olja och oljehaltiga blandningar från fartygens lastdel (inklusive pumprum och ballasttankar) är tillåtet under förutsättning att samtliga dessa krav uppfylls:

- Fartyget får inte befinner sig inom ett specialområde.
- Fartyget måste befinner sig mer än 50 nautiska mil från närmaste land.
- Fartyget måste vara under gång.
- Mängden utsläppt olja får inte överstiga 30 liter per nautisk mil.
- För tankfartyg levererade före den 31 december 1979 gäller att den sammanlagda mängden utsläppt olja inte får överstiga en femtontusendel av den last i vilken den utsläppta oljan ingick. För tankfartyg levererade efter den 31 december 1979 får mängden olja inte överstiga en trettiotusendel del av den last i vilken den utsläppta oljan ingick.
- Fartyget måste ha i drift ett godkänt system för övervakning och kontroll av oljeutsläpp.

Utsläpp av olja och oljehaltiga blandningar från maskinrum är tillåtet under förutsättning att samtliga dessa krav uppfylls:

- Fartyget får inte befinner sig inom ett specialområde.
- Fartyget måste vara under gång.
- Oljehaltig blandning får inte komma från lastpumprum eller vara blandat med oljelastrester.
- Oljehalten i utsläppet måste vara mindre än 15 ppm.
Fartyget måste ha i drift ett system för övervakning och kontroll av utsläppen, en olje-/länsvattenseparator som kan skilja olja från vatten, samt oljefiltrer eller annat system som uppfyller kraven i regel 16 i Annex I..

Målsättningen med reglerna i 1974 års SOLAS-konvention om säkerhet för människoliv till sjöss är att lägga fast internationella bestämmelser för hur fartyg skall vara konstruerade, utrustade och bemannade på ett hur sjösäkerhetssynpunkt tillfredsställande sätt. Konventionen innehåller bland annat detaljerade konstruktionsregler (vattentät indelning, stabilitet, maskineri, elektriska installationer, brandskydd), regler för utrustning och arrangemang för livräddning, radiokommunikation, navigation, transport av farligt gods m.m. I enlighet med reglerna i konventionen utfärdas certifikat för bl.a. passagerarfartygssäkerhet, lastsäkerhet, säkerhetsutrustning för lastfartyg, säkerhetsradioutrustning för lastfartyg etc. Ett stort antal tillägg och ändringar har gjorts av SOLAS, de senaste i december 2002. SOLAS-konventionen trädde i kraft 1980.

ISM-koden: International Management Code for Safe Operation and for Pollution Prevention
ISM-koden ingår som en del i SOLAS. De flesta regler och bestämmelser för bättre sjösäkerhet och säkrare transporter i syfte att förhindra utsläpp av olja och andra föroreningar, har hittills främst varit av teknisk natur. Det har dock visat sig att det till 70–80 procent är mänskliga misstag som ligger bakom fartygsolyckor och mot denna bakgrund har operativa kontroller blivit allt vanligare. Detta arbete intensifierades inom IMO efter olyckan med passagerarfärjan Scandinavia Star våren 1990, och har nu lett fram till ett konkret resultat: den s.k. ISM-koden för internationell standard för säker ledning och drift av fartyg samt för att skydda den marina miljön (International Management Code for Safe Operation and for Pollution Prevention) för uppföljning av uppställda säkerhetsmål.

Parisavtalet: Paris Memorandum of Understanding on Port State Control, Paris MoU

Erfarenheterna visar att vissa flaggstater inte i tillfredsställande utsträckning kontrollerar att deras fartyg uppfyller de regler och bestämmelser som man internationellt beslutat om beträffande fartygs konstruktion, säkerhet och för att minska riskerna för förorening. För att tackla detta problem finns ett avtal mellan 18 europeiska stater samt Kanada om att minst 25 procent av de utlandsflaggade fartyg som anlöper hamnar i medlemsländerna skall inspekteras. Dessa inspektioner kallas Hamnstatskontroll (Port State Control)

1990 års OPRC-konvention: International Convention on Oil Pollution Preparedness, Response and Co-operation

STCW-konventionen om utbildning, träning, certifiering och vakthållning för sjöfolk är den första konvention i vilken man på internationell nivå lägger fast grundläggande krav beträffande utbildning, träning, certifiering och vakthållning för sjöfolk. Regler av detta slag hade tidigare beslutats på nationell nivå oftast utan hänsyn till reglerna i andra länder. Detta innebar att var stora skillnader i reglerna mellan olika länder, trots att sjöfarten är den mest internationella av alla närningar. STCW-konventionen trädde ikraft 1984 och har ratificerats av 144 länder.

1969 års Bonnavtal: Agreement for Cooperation in Dealing with Pollution of the North Sea by Oil and Other Harmful Substances

1971 års Köpenhamnsavtal

Nordiskt Räddningstjänstavtal

Ett avtal har träffats mellan Danmark, Finland, Norge, Sverige och Island och syftar till att skapa möjligheter till direkt samarbete på myndighetsnivå över de avtalslutande staternas territorialgränser och vid olyckshändelser samt överhängande fara för olyckshändelser hindra eller begränsa skador på människor eller egendom eller i miljön.

1974 års Nordiska miljöskyddskonvention

Nordiska miljöskyddskonventionen (NMK) innehåller regler om ömsesidigt hänsynstagande vid prövningen av tillåtligheten av miljöskadlig verksamhet. Enligt konventionens grundläggande regler skall vid prövning av tillåtligheten av miljöskadlig verksamhet störning som sådan verksamhet medför eller kan medföra i ett annat fördragslutande land likställas med störning i det egna landet. När beslut om miljöskadliga verksamheters tillåtlighet fattas i Danmark, Finland, Norge och Sverige skall man inte ta hänsyn till nationsgränserna, utan betrakta grannländernas miljö som lika viktigt som miljön i det land där den rättsliga prövningen äger rum. Enligt NMK skall staterna t.ex. underrätta varandra (informationsplikt) om prövningsprocesser som gäller verksamheter som kan medföra gränsöverskridande effekt av betydelse och den som kan drabbas av gränsöverskridande störning har rätt att i verksamhetslandet föra talan och delta i miljöbeslutsprocesser.
Espokonventionen: Convention on Environmental Impact Assessment in a Transboundary Context

Espokonventionen trädde i kraft 1997 och syftar till att förbättra internationellt samarbete vad gäller miljökonsekvensbeskrivningar och då särskilt gränsöverskridande miljöeffekter av vissa verksamheter. Parterna skall sträva mot att utarbeta förebyggande åtgärder som förhindrar, mildrar och på ett avgörande sätt hjälper till att övervaka skadliga miljöeffekter i allmänhet och gränsöverskridande miljöeffekter i synnerhet. Vidare skall parterna göra det möjligt för stater att meddela och konsultera varandra beträffande alla större projekt som övervägs och som kan förutses kunna orsaka gränsöverskridande miljöeffekter. Exempel på i oljesammanhang intressanta större projekt och verksamheter som näms specifikt i konventionen är oljeraffinaderier och anläggningar för framställning av gas eller flytande bränsle, olje- och gasledningar med stora dimensioner, kommersiella hamnar samt inlandsvattenleder och hamnar för sådana leder som tillåter trafik med fartyg över 1 350 ton, anläggningar till havs för utvinning av kolväten samt större lagringsanläggningar för bensin, petrokemiska och kemiska produkter.

1992 års OSPAR-konvention: Convention for the Protection of the Marine Environment of the North-East Atlantic

av de regler som finns i konventionen och dess annex samt av det stora antal rekommendationer som antagits. HELCOM har även ansvar för genomförandet av det åtgärdsprogram för Östersjön (Joint Comprehensive Environmental Action Programme, JCP) som antogs av Östersjöländernas miljöministrar våren 1992.

Helsingforskonventionens regler rörande sjöfart och utsläpp från fartyg överensstämmer med de regler som gäller för specialområden enligt MARPOL-konventionen.

HELCOM har under årens lopp antagit ett stort antal rekommendationer och riktlinjer som syftar till att öka sjösäkerheten, minska utsläppen av föroreningar från sjöfarten samt att genomföra oljebekämpning och övervakning. Ett exempel på det omfattande samarbetet som bedrivs är den gemensamma Östersjöstrategin. Alla stater som undertecknat MARPOL-konventionen skall ha mottagningsanläggningar in i sina hamnar för det fartygsgenererade avfall och de lastrester som fartygen har behov av att lämna land. Samtliga Östersjöstater har ratificerat konventionen och reglerna om mottagningsanläggningar har gällt i Östersjöområdet i många år. Detta till trots kunde det emellertid konstateras att det alltjämt skedde ett stort antal utsläpp från fartyg av oljehaltigt avfall och att brister i hamnarnas mottagning av fartygfyllt avfall till stor del kunde misstänkas vara skälet till att utsläppen fortsatte.

Sverige tog därför år 1995 inom ramen för arbetet inom HELCOM initiativ till det som så småningom blev den s.k. Östersjöstrategin (Baltic Strategy for Port Reception Facilities for Ship-generated Wastes and Associated Issues). I huvudsak består strategin av följande delar:

- Ett gemensamt finansieringssystem – det s.k. no-special fee systemet – för mottagning och behandling av det fartygsgenererade avfallet. Systemet innebär att alla fartyg skall betala en av den enskilda hamnen för varje fartygtyp fastställd avgift, oavsett hur mycket eller hur lite avfall fartygen avlämnar.
- Obligatorisk ilandlämning (undantag görs dock för färje- och linjetrafik samt små avfalls- mängder).
- 24 timmars förhandsanmälan om avlämningsbehovet till hamnen.
- Avfallshanteringsplaner i alla hamnar.

Därtill kommer utbyggnad eller modernisering av mottagnings- och behandlingsanläggningar i samtliga östersjöhamnar samt ett samarbete länderna emellan för att upptäcka och bevara olagliga utsläpp.

Strategin, som i skilda delar trädde i kraft under 2000, består av ett antal rekommendationer i tillägg till 1992 års Helsingforskonvention. Samtliga östersjöstater har kommit överens om att tillämpa Östersjöstrategin i sina hamnar och det förutsätts därför att länderna införlivar dessa rekommendationer i sin nationella lagstiftning.

Det internationella samarbete inom HELCOM syftar till att förebygga föroreningar från sjöfarten, både föroreningar från fartygens normala drift och föroreningar i samband med olyckor. Gruppen arbetar för att

- se till så att antagna regler genomförs på ett effektivt och samordnat (harmoniserat) sätt, inklusive ett nära samarbete mellan att se till så att brott mot reglerna bevisas,
- identifiera och främja åtgärder som syftar till att begränsa förorening från havsbaserade källor och på samma gång främja en säker sjöfart. För att ta hänsyn till sjöfartens internationella karaktär arbetar HELCOM Maritime för att främja att internationella regler antas på regional och internationell nivå.

Arbetet in HELCOM Response har som målsättning att

- säkra snabba nationella och internationella insatser i samband med föroreningsincidenter till havs,
- säkra att om en olycka sker det finns rätt utrustning och riktiga rutiner för att man snabbt och i samarbete med grannstaterna skall kunna reagera på olyckan,
- analysera utvecklingen av sjötransporterna i Östersjöregionen och undersöka hur detta kan påverka det internationella samarbetet inom bekämpningsområdet,
- samordna den luftburna övervakningen av fartygslederna för att ge en komplett bild av föroreningsutsläpp från fartyg samt att avslöja misstänkta förorenare.

Arktiska Rådet

Europeiska Unionen

Direktiv
- Europaparlamentets och rådets direktiv 2000/59/EG om mottagningsanordningar i hamn för fartygsgenererat avfall och lastrester (*Mottagningsdirektivet*)
- Europaparlamentets och rådets direktiv 2000/60/EG om upprättande av en ram för gemenskapens åtgärder på vattenpolitikens område (*Vattendirektivet*).

Strategier
- EU:s strategi till skydd för den marina miljön.
- EU:s kustzonsstrategi.

Beslut
- Beslutet 1986 (med ändring 1988) om att etablera ett Gemenskapens informationssystem för kontroll och reduktion av förorening orsakad av spill av kolväten eller andra farliga ämnen till havs.
- Beslutet om en ram för samarbetet för att bekämpa förorening av den marina miljön på grund av olyckor eller avsiktliga utsläpp (beslut 2850, 20/12/2000)
- Beslutet 2002 att skynda på utfasningen av tankfartyg med enkelt skrov. (EG 1726/2003)

Erika-paketen
Efter olyckan 1999 med tankern Erika och det omfattande oljeutsläpp som därigenom skedde utanför Frankrikes kust, beslutade EU-länderna om ett antal åtgärder – det två s.k. Erika-åtgärdspaketen Syftet med åtgärderna var att komma till rätta med de brister i sjösäkerhetsreglerna som blivit uppenbara i och med Erika-olyckan Bland annat ingår åtgärder för hårdare och mer effektiv hamnstatskontroll (jfr Parisavtalet om hamnstatskontroll), harmonisering av genomförandet inom EU av gällande internationella regler och åtgärder för att stödja internationella organisationers primära ansvar att utarbeta sådana regler, åtgärder för att främja en harmonisering av navigeringssystem och trafikövervakning, etc.

Europeiska Sjösäkerhetsbyrån
Bland byråns särskilda uppgifter kan nämnas arbetet med att stärka den statliga hamnkontrollen, övervaka de klassificeringsståndskap som är erkända på EU-nivå, utveckla en gemensam metodik för undersöning av olyckor till havs och att bygga upp ett europeiskt informationssystem för sjöfarten. EMSA kommer också att medverka i utvidgningsprocessen genom att bistå kandidatländerna med att genomföra lagstiftningen om sjösäkerhet och förhindrande av föroreningar från fartyg. I slutet av 2003 fattade EU-ländernas regeringschefer beslut om att EMSA skall förläggas till Lissabon.

Utfasning av tankfartyg med enkelskrov

Gemensam beredskapsorganisation

EG-direktivet om mottagningsanordningar i hamn

avfallet inte lämnas i land i anlöpshamnen om fartyget har tillräckligt utrymme ombord för att härbärgera avfallet tills man anläper nästa hamn.

Direktivet omfattar också vissa principer för vilka system som får användas för att täcka kostnaderna för mottagning och hantering av det fartygsgenererade avfallet. Dessa system får inte innebära incitament för fartygen att släppa ut sitt avfall till sjöss. Som huvudregel gäller dock att alla fartyg, oavsett om fartyget i fråga ombord för att behålla sitt avfall, i betydande omfattning skall bidra till kostnaderna. Vid utformningen av avgiftssystemet får emellertid viss hänsyn tas till vilken typ av avfall och vilka avfallsstörningar som ett fartyg verkligen lämnar. Fartygets befälhavare är också skyldig att i förväg till hamnen anmärka hur mycket och vilka typer av avfall som fartyget behöver/vill lämna.

EG:s ramdirektiv för vatten

Att se över och rationalisera EU:s splittrade lagstiftning om vattenvård var en viktig drivkraft för att utarbeta EG:s ramdirektiv för vatten – Vattendirektivet. Tanken är att man skall utgå från naturliga avrinningsområden, inte från administrativa gränser, vid genomförandet av åtgärder. Det övergripande syftet med Vattendirektivet, som trädde i kraft år 2000, är att EU-ländernas ytvatten (sjöar och vattendrag), grundvatten och kustvatten senast år 2015 (med vissa möjligheter till ytterligare tidsfrister) skall ha det som definieras som god ekologisk och kemisk status.

De enda vatten som inte omfattas av direktivet är öppna havsområden (se dock förslaget till gemensam marin strategi för EU) samt sådana vattnarkteringar som inte direkt påverkar ytavvattnet. Kustvatten innebär vatten upp till en sjömil utanför baslinjen (för bedömning av biologiska kriterier för god vattenstatus) eller territorialgränsen på 12 sjömil (för bedömning av kemiska kriterier för god vattenstatus).

EU-strategin till skydd för den marina miljön

Den marina strategin skall ha sin utgångspunkt i ett integrerat ekosystemtänkande och grundas på miljökvalitetsmålen i EG-direktivet om bevarande av livsmiljöer samt vilda djur och växter (Habitadirektivet) och målet ”god ekologisk status” enligt Vattendirektivet. En EU-gemensam marin strategi måste t.ex. samordnas med genomförandet av integrerad kustområdesförvaltning för att planering och förvaltning på båda sidor om kustlinjen (land och hav) och mellan kust- och öppet hav (hav och hav) skall bli enhetlig.

Beträffande olja och oljeutsläpp anges i strategin vissa mål för utsläpp från fartyg samt från platforer och oljekällor för utvinning av olja och gas. Man skall se till att alla existerande utsläppsregler efterlevs senast år 2010 och att samtliga utsläpp från berörda källor skall ha upphört till år 2020. När det gäller försök om konkreta åtgärder sägs att kommissionen skall

- ha undersökt olika möjligheter att förbättra övervakningen av olagliga utsläpp av olja till havs och underlätta att lagöverträdare kan ställas till ansvar. I detta arbete skall man samarbeta med sekretariaten och kommissionerna för Bonnavalet, Lissabonavtalet, Helsingforskonventionen och Barcelonakonventionen,
- i samarbete med berörda organisationer och övriga aktörer utarbeta en strategi som syftar till att eliminera alla oljeutsläpp från samtliga källor. Kommissionen kommer att gå igenom de olika synsätt/arbetsätt som nu finns när det gäller utnyttjande och finansiering av mottagningsanläggningar för fartygsgenererat avfall.

EU-strategin för kustzonen
Sedan 1996 pågår också arbete inom EU för att identifiera och främja åtgärder för att förbättra tillståndet i de europeiska kustområdena och hejda ytterligare förstörelse av kustmiljön (kustzonsstrategin). Som skäl till att det krävs gemensamma åtgärder till skydd för kustområdena framhålls att

- det handlar om ett gemensamt natur- och kulturarv liksom om problem som gränsöverskridande föroreningar, gränsöverskridande turistströmmar och frågor om säkerhet till havs. Dessa fenomen har europeisk omfattning och kan inte läggas på enskilda medlemsländer att ta hand om.
- det är EU:s regional-, transport-, fiskeri-, miljö-, jordbruks-, energi- och industripolitik som styr det som händer i kustområdena.

Det behövs möjligheter till erfarenhets- och kunskapsutbyte på detta område, där det fortfarande finns få goda exempel att peka på samtidigt som kraven är starka från både politiker och allmänhet på åtgärder till skydd av och för hållbar utveckling i kustområdena.

Internationellt samarbete mellan icke-statliga organisationer

Klassificeringssällskapen skulle ursprungligen främst vara försäkringsbolag. Även den som hyr in ett fartyg för frakt (befraktare) skulle dock kunna få en av redaren oberoende uppgift om hur ett fartyg byggts och om det kunde anses som sjövärdigt.

Idag har sällskapen delvis en annan roll. De träffar överenskommelse med redare om att nya fartyg skall byggas till en viss klass, exempelvis att det nya fartyget skall klara frakt av olja även under isförhållanden. Inspektörer från sällskapen kontrollerar därefter på varven att fartygen faktiskt byggts enligt de ställda kraven. I stort sett alla sjöfartsnationer godtar de krav som klassificeringssällskapen ställer för de olika klasserna.

Klassificeringssällskapen har under den senaste tioårsperioden utsatts för stark kritik, inte minst från försäkringsbolagen. Kritiken har gällt att sällskapen inte har tagit sitt ansvar, utan vid sin periodiska tillsyn godkänt sådana fartyg som p.g.a. brister i t.ex. skrovkvalitet inte borde ha fått kvarstå i sin kass.

Av dagens ca 40 klassificeringssällskap är det bara en handfull som kan anses vara accepterade av alla sjöfartsnationer. Dess är engelska Lloyd’s Register of Shipping, franska Bureau Veritas, tyska Germanischer Lloyd, amerikanska American Bureau of Shipping samt norska Det Norske Veritas (norskt). De större sällskapen är anslutna till International Association of Classification Societies.

Den ersättningsskyldighet som fartygsägaren eller motsvarande part (bareboat charterer, manager eller ship operator) har mot mot tredje man försäkras normalt i en så kallad P&I-klubb

7.6 Svensk lagstiftning, strategier och samarbete

Åtgärder för att förebygga och beivra oljeutsläpp

Under de senaste årtiondena har internationella och nationella åtgärder vidtagits för att minska oljeutsläppen från fartyg. Trots detta förekommer fortfarande utsläpp i oacceptabel omfattning.

Regeringen lade i maj 2001 fram propositionen ”Åtgärder mot förorening från fartyg” (prop. 2000/01:139). Däri konstaterades att merparten av enskilda oljeutsläpp i svenska vattenområden är mindre än 1 000 liter, respektive att det sedan 1994 inte har gjorts något utsläpp större än 100 000 liter. Ett mycket begränsat antal utsläpp har legat i intervallet mellan 10 000 och 100 000 liter. Propositionen antogs i sin helhet av riksdagen i december 2001. Riksdagsbeslutet innebär bl.a. att vattenföröreningsavgiften har höjts för de mindre utsläppen, alltså i intervallet 50–26 000 liter (se SFS 2001:1294 samt Miljö- och jordbruksutskottets betänkande 2000/01:MJU4). I propositionen finns en sammanfattning av de åtgärder som senare beslutades av riksdagen om bl.a. ingripanden mot fartyg, sanktioner och tillsyn med anledning av den s.k. Östersjöstrategin.

Tillsyn

Tillsyn över fartyg i syfte att förebygga och begränsa föroreningar enligt lagen om förorening från fartyg utövas av Sjöfartsverket. Inom Sjöfartsverket är det Sjöfartsinspektionen som svarar för denna tillsyn.

Tillsyn över avfallsmottagning i hamnar utövas av Sjöfartsinspektionen och, i fråga om vidarehantering och behandling av avfallet, av berörda länsstyrrelser och kommuner. Sjöfartsverket meddelar enligt lagstiftningen om fartygsföroreningsföreskrifter om utformning av hamnarnas mottagningsanläggningar. Verket prövar även om mottagningsanordningarna motsvarar vad som har meddelats i dessa föreskrifter. Länsstyrrelser och kommuner utövar tillsyn över mottagnings- och behandlingsanläggningar enligt regler i miljöbalken. I fråga om denna ansvarsfördelning konstateras i den propositionen att det enligt regeringens mening ”inte är fråga om något konkurrende ansvar för samma tillsynsuppgifter”.

Sålunda skall, som nämnts, Sjöfartsverket pröva om anordningarna uppfyller kraven på utformning och drift i förhållande till fartygens behov, medan länsstyrelser och kommuner har att pröva om reglerna enligt miljöbalken är uppfyllda vad gäller tillsynsansvaret för den fysiska hanteringen av avfallet (hur avfallet omhändertas).

Svensk lagstiftning

En rad olika lagar och förordningar (här i kronologisk ordning) är av stor betydelse för det marina oljeskadeskyddet i Sverige:

- Lag om kontinentalsockeln (1966:314)
- Lag om ersättning från Internationella oljeskadefonden (1973:1199)
- Lag om transport av farligt gods (1982:821)
- Sjötrafikförordning (1986:300)
- Lag om skydd mot olyckor (2003:778)
- Förordning om skydd mot olyckor (2003:789)
- Fartygssäkerhetslag (2004:364)
- Fartygssäkerhetsförordning (2003:438)
- Sjölag (1994:1009)
- Miljöbalk (1998:808)
- Avfallsförordning (2001:1063)
- Lag om extraordinära händelser i fredstid (2002:833)

Lagen om kontinentalsockeln: I lagen regleras rätten att utforska kontinentalsockeln och utvinna dess tillgångar. I första hand tillkommer denna rätt staten, men genom tillståndsgivning kan även andra intressenter få bedriva sådan verksamhet. Vid tillståndsprövningen tillämpas regler i miljöbalken.

Lagen om åtgärder mot förorening från fartyg: Utsläpp från fartyg av olja och andra skadliga ämnen regleras i Sverige huvudsakligen av lagen om åtgärder mot förorening från fartyg. Lagen är tillämplig vid transport av olja och andra skadliga ämnen. Bestämmelserna i lagen ansluter till reglerna i MARPOL-konventionen respektive Helsingforskonventionen. I lagen finns bestämmelser om förbud mot förorening från fartyg (däribland oljeutsläpp), om fartygs konstruktion, om mottagning av rester och avfall som innehåller skadliga ämnen från fartyg, samt om tillsyn och andra åtgärder för att förebygga, begränsa och beivra föroreningar. Lagen ändrades år 2001 för att även omfatta regler i enlighet med Östersjöstrategin och är 2002 för att omfatta bestämmelserna enligt EG-direktivet om mottagningsanläggningar.

Lagen om åtgärder mot förorening från fartyg kompletteras av förordningen om åtgärder mot förorening från fartyg samt av föreskrifter meddelade av Sjöfartsverket (se Kungörelse med föreskrifter om åtgärder mot vattenförorening från fartyg; SjöSFS 1985:19, senast modifierad 2003–01–09).

För havsområden, däribland Östersjöområdet och Nordsjöområdet, enligt MARPOL-konventionens Annex 1 om olja klassificerats som specialområde (Special Area), gäller särskilda och strängare regler för utsläpp av olja och oljehaltigt avfall.

I lagen om åtgärder mot förorening från fartyg finns bestämmelser om en vattenföroreningssavgift. En sådan avgift skall tas ut från fartygets redare då reglerna om oljeutsläpp har åsidosatts. Om det avgörande inflytandet över fartygets drift utövades av någon annan i redarens ställe, skall avgiften dock påföras den som haft detta inflytande. I sista hand skall avgiften påföras fartygets ägare. Vattenföroreningssavgiften fastställs, enligt en särskild tabell, med hänsyn till utsläppets omfattning och fartygets storlek. För att effektivisera utredningen av vattenföroreningssärenden har Kustbevakningen rätt att inleda förundersökning och påbörja utredning i samband med utsläppet.

Lagen om transport av farligt gods: Lagen är tillämplig på transport av farligt gods på land, i luften och till sjöss. Med transport menas även sådan lastning och lossning av farligt gods som utgör ett led i förflyttningen av godset, exempelvis hantering i en godsterminal. Med farligt gods menas gods som har sådana egenskaper att det vid transport kan medföra skador på människor, djur, egendom eller miljö. Vid transport skall de åtgärder vidtas och den försiktighet iakttas som fordras för att hindra eller motverka skada. Närmare bestämmelser om sådana försiktighetsmått meddelas av Räddningsverket.

Sjötrafikförordningen: För sjötrafik inom Sveriges sjöterritorium och ekonomiska zon tillämpas de internationella sjövägsreglerna, som definieras i 1972 års konvention om internationella regler för att förhindre collisioner till sjöss (Convention on the International Regulations for

Av lagen framgår att Kustbevakningen har ansvar för miljöräddningstjänst till sjöss när olja eller andra skadliga ämnen har kommit ut i vattnet. Detta ansvar gäller inom Sveriges sjöterritorium, med undantag för vattendrag, kanaler, hamnar och andra insjöar än Vänern, Vättern och Mälaren, samt inom Sveriges ekonomiska zon.

Lagen omfattar också villkoren för ingrepp i annans rätt, skyldighet för statlig eller kommunal myndighet att delta i en räddningsinsats på anmodan av räddningsledaren samt kommunernas rätt till ersättning från staten för kostnader vid kommunal räddningstjänst med anledning av utflytten av olja eller andra skadliga ämnen. Kommunerna har även rätt till ersättning från staten för saneringskostnader med anledning av sådant utflytande.

Staten ges rätt att överklaga en domstols avgörande beträffande en kommunars rätt till ersättning av staten i vissa fall. Dessutom har miljöräddningstjänst till sjöss fått ett något vidare tillämpningsområde. Numera behöver inte olja eller skadliga ämnen ha kommit ut i vattnet, utan det räcker med att det föreligger en överhängande, konkret fara för att så skall ske.

Fartygssäkerhetslagen: Fartygssäkerhetslagen gäller alla fartyg som används till sjöfart inom Sveriges sjöterritorium samt svenska fartyg som används till sjöfart utanför vårt sjöterritorium. Lagen gäller även alla svenska rederier samt utländska rederier som bedriver sjöfart med svenskt fartyg eller använder annat fartyg till sjöfart inom Sveriges sjöterritorium. Lagen behandlar regler för fartygs sjövårdighet och lastning, passagerarfartyg, bemanning, arbetsmiljö, skyddsverksamhet, tillsyn, ansvarsbestämmelser m.m.

Lagen om Sveriges ekonomiska zon: Sveriges ekonomiska zon omfattar det havsområde utanför territorialgränsen som regeringen föreskriver. Zonen får inte utsträckas över en avrunttringslinje som överenskommits med annan stat eller, i avsaknad av sådan överenskommelse, över mittlinjen i förhållande till den andra staten. Med mittlinjen förstås en linje på vilken varje punkt är belägen på lika stort avstånd från de närmaste punkterna på de baslinjer varifrån bredden av Sveriges och den andra statens territorialhav räknas. I fråga om rätten att utforska continental-

Sjölagen: Sjölagen reglerar bland annat vilket ansvar en redare har. Av 7 kap. sjölagen framgår att redaren är ansvarig för skada som befälhavaren, en medlem av besättningen och en lots orsakar genom fel eller försummelse i tjänsten. Redaren är också ansvarig om skada vållas av någon annan, när denne på redarens eller befälhavarens uppdrag utför arbete i fartygets tjänst. Om redaren har betalat ett skadestånd enligt ansvarsbestämmelsen har han rätt att kräva tillbaka detta från den som vållat skadan. Särskilda bestämmelser om ansvar och om inskränkning av en redares ansvar finns i 9, 10 och 13–15 kap. sjölagen.

Miljöbalken: Miljöbalken utgör en samordnad, breddad och skärpt miljölagstiftning för en hållbar utveckling. Den smallar samman regler från 16 tidigare miljölagar och bildar en övergripande lagstiftning som rör all miljöpåverkan.

Miljöbalkens tillämpningsområde är direkt kopplat till målet om en hållbar utveckling. I miljöbalkens 2 kap. finns ett antal allmänna hänsynsregler, som ger uttryck för bl.a. försiktighetsprincipen, principen att det är förorengaren som skall betala, produktvalsprincipen samt principer om hushållning, kretslopp och lämplig lokalisering av verksamheter och åtgärder. Lagstiftningen fungerar förebyggande genom att det ställs bindande krav på den som driver verksamhet eller vidtar åtgärder att skaffa sig kunskaper om ingreppens miljöeffekter och att vidta skyddsåtgärder. Tillsynsmyndigheterna har befogenhet att direkt lägga hänsynsreglerna till grund för förelägganden, förbud, villkor vid tillståndsprövning m.m. De allmänt hållna hänsynsreglerna blir på så sätt konkretiserade genom föreskrifter eller beslut i enskilda fall. Balken innehåller därutöver särskilda hänsynsregler för viss verksamhet, vilket bl.a. omfattar bestämmelser om tillstånds- och anmälningsplikt för viss miljöfarlig verksamhet och vattenverksamhet. Tillstånds- och tillsynsarbetet skall bland annat styras av de 15 av riksdagen fastställda miljöqualitetsmålen, nedbrutna i delmål, regionala mål och sektorsmål.

Avfallsförordningen: Avfallsförordningen gäller avfall och hanteringen av avfallet. För vissa avfallsslag och viss avfallshantering finns ytterligare bestämmelser i andra förordningar och föreskrifter. Förordningen beskriver vilka regler som gäller för insamling, återvinning, bortskaffande och deponering av avfall. Dessutom beskrivs i förordningen till vilka avfalls-kategorier som olika sorters avfall hör och hur farligt avfall, brännbart avfall och organiskt avfall definieras. Av förordningen framgår att oljerester och oljehaltigt material som regel är att betrakta som farligt avfall.

Lagen om extraordinära händelser i fredstid: Lagen reglerar kommuners och landstings organisation och befogenheter vid extraordinära händelser i fredstid. Den tillämpas vid en större
händelse som avviker från det normala och som hotar liv, hälsa, miljö eller egendom. För att betraktas som extraordinärt skall händelseförloppet vara snabbt och svårt att överblika och därmed kräva snabba beslut av kommunens ledning och därmed kräva snabba beslut av kommunens ledning. Av lagen framgår att kommunen måste tillsätta en krisledningsnämnd och upprätta en plan för hantering av extraordinära händelser. Lagen lyfter fram kommunens skyldighet enligt kommunallagen att göra en risk- och sårbarhetsanalys, som visar var i kommunen extraordinära händelser skulle kunna inträffa och vilka konsekvenser en sådan händelse skulle kunna medföra.

7.7 Risker

Riskerna för oljeutsläpp till sjöss och oljepåslag i svenska kustområden kan oversikligt knytas till följande olika typer av händelser:

<table>
<thead>
<tr>
<th>Händelser som kan leda till oljeutsläpp och oljepåslag</th>
<th>Fartyg</th>
<th>Övrigt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tankfartyg</td>
<td>Övriga fartyg</td>
</tr>
<tr>
<td>Olyckor</td>
<td>Kollisioner</td>
<td>Kollisioner</td>
</tr>
<tr>
<td></td>
<td>Grundstötningar</td>
<td>Grundstötningar</td>
</tr>
<tr>
<td></td>
<td>Brand/explosion</td>
<td>Brand/explosion</td>
</tr>
<tr>
<td></td>
<td>Lastning/lossning/ bunkring</td>
<td>Lastning/lossning/ bunkring</td>
</tr>
<tr>
<td>Operationella utsläpp</td>
<td>Avsiktligt utsläpp av förorenat ballastvatten eller förorenat länsvatten</td>
<td>Avsiktligt utsläpp av förorenat länsvatten</td>
</tr>
<tr>
<td>Terrorhandlingar</td>
<td>Sprängattentat eller liknande</td>
<td>Sprängattentat eller liknande</td>
</tr>
</tbody>
</table>

Orsakerna till dessa händelser varierar avsevärt men kan ofta beskrivas som en komplex kedja av delhändelser och samverkande betingelser. Genom att vidta olika typer av förebyggande åtgärder kan man minska sannolikheten för att händelserna inträffar. Om något ändå sker kan olika typer av tidiga insatser åtgärder bidra till att begränsa konsekvenserna av utsläppet. Risken för oljeutsläpp och oljepåslag definieras i detta sammanhang som ett sammansatt mått på sannolikheten för att händelsen alls inträffar och på svårighetsgraden på de konsekvenser för miljö, ekonomi och andra värden som händelsen får.

Utsläpp från landbaserade källor står för en mycket stor andel av den olja som förörenar den marina miljön. Enligt vissa bedömningar kan mer än hälften av den olja som när vattnet kommer från landbaserade källor.
Landbaserade källor till oljeföroreningar

Det omfattande bruket av olja och oljeprodukter innebär att olja och petroleumprodukter oavsiktligt eller med avsikt släpps ut i miljön från ett stort antal källor punktkällor och diffusa källor. Dessa vatten- eller luftburna kolvätten hamnar i sjöar, vattendrag och kustvatten. Storleken, frekvensen och de potentiella miljöeffekterna av dessa utsläpp spelar en viktig roll när man beslutar om omfattningen av de åtgärder som behöver vidtas för att begränsa utsläppen.

Det är också avgörande för omfattningen på de åtgärder som vidtas (för att minska de ”dagliga” utsläppen” såväl som för att bygga upp en beredskap för att bekämpa utsläpp i samband med olika typer av olyckshändelser) minima de skador som de förorsakar.

De viktigaste landbaserade punktkällorna och diffusa källorna till utsläpp av olja och oljeprodukter är:

- utsläpp av otillräckligt renat kommunalt avloppsvatten och dagvatten,
- utsläpp av otillräckligt renat avloppsvatten från industrier längs kuster och vattendrag,
- utsläpp från den normala driften eller i samband med olyckor från raffinaderier, petrokemisk industri, oljeterminaler som är lokalisera vid kusten eller längs vattendrag,
- utsläpp av flyktiga petroleumkolvätten från industrier, raffinaderier/oljeterminaler, bensinstationer och motorfordon (trafiken)
- utsläpp i samband med olyckor (transporter, bränder, läckage i rörledningar m.m.)

U.S. National Research Council har i en rapport 2002 beräknat att den årliga totala globala tillförseln av olja och petroleumprodukter/föreningar till den marina miljön från samtliga källor till havs och på land uppgår till runt 1,3 miljoner ton. Det finns emellertid stor osäkerhet i dessa beräkningar och NRC säger att utsläppen kan vara allt mellan 470 000 ton och 8,4 miljoner ton. Enligt beräkningarna fördelas utsläppen på följande sätt mellan olika källor:

- Naturliga källor (naturliga källor som läcker olja till marken, s.k. seeps): ca. 600 000 ton
- Utsläpp från mänsklig användning av olja och oljeprodukter (inklusive utsläpp från samtliga landbaserade källor): ca 480 000 ton
- Olijetransporter till sjöss: ca 150 000 ton
- Oljeutvinning till havs: ca 38 000 ton

Siffrorna för naturliga källor, landbaserade källor och operationella fartygutsläpp är, enligt NRC, särskilt osäkra. Så är exempelvis de högsta uppskattningarna av oljetillförsel från källor på land 35 gånger högre än den siffra man stannat vid (bästa uppskattningen).

Totalt uppskattas cirka 75 procent av de utsläppta volymerna olja från oljeanvändning komma från källor på land respektive fritidsbåtar (utsläpp av oförbrända kolvätten från tvätaktomotorer).

En rapport från FN:s expertgrupp GESAMP (Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) uppgavs att de totala oljeutsläppen skulle uppgå till 2,3 miljoner ton per år, varav:

- 50 procent av tillförseln kom från landbaserade källor (dagvatten, raffinaderier etc.),
- 24 procent av tillförseln kom från oljeterminaler och sjöfart (operationella utsläpp och olyckor),
- 13 procent av tillförseln kom från atmosfärsikt nedfall,
- 11 procent av tillförseln kom från naturliga källor.

Fartygstrafik och transportmönster i svenska farvatten

Om sjöfarten, inklusive hamnar och oljeterminaler, uppfyller de krav som gäller internationellt beträffande fartygs konstruktion, utrustning för kommunikation och navigation, säkerhetsarbetet ombord, besättningens kompetens samt direkt miljöskyddsrelaterade regler (t.ex. i fråga om ilandlämning av avfall) så är detta ett miljövänligt transportsystem.

Erfarenhet och statistik visar att operationella utsläpp från fartyg är den vanligaste utsläpps- typen, men att fartygsolyckor – i synnerhet då tankfartyg är inblandande – kan leda till mycket stora utsläpp. Transportmönster och fartygstrafik är därför av stor betydelse för riskerna för oljeutsläpp och oljepåslag på land. Framtida förändringar i transportmönster och tonnage- sammansättning påverkar därmed också de risker och hot som den svenska oljeskadeskyddsinriktningen skall kunna möta.
Den största delen av fartygstrafiken till svenska hamnar går längs västkusten (främst till Göteborg och Brofjorden), västra delen av sydkusten (till Helsingborg, Landskrona och Malmö) samt på ostkusten till Stockholm. År 2000 hade Göteborg 11 000 fartygsanlöp, exklusive färjetrafiken, och Brofjorden 3 300 anlöp.

Vid en totalbedömning av trafikmönstret måste även genomsnittstrafiken tas med i beräkningen. I flera av hamnarna dominerar färjetrafiken antalet fartygsrörelser; för Stockholm registrerades under år 2000 t.ex. 8 552 passager in och ut med färjor.

Hamnarna i Göteborg och Brofjorden kan anlöpas av fartyg på upp till 250 000 ton. De tankfartyg som trafikerar Östersjöområdet är i allmänhet betydligt mindre, men laster upp till 150 000 ton olja kan förekomma i Östersjön.

Oljetankfartygstrafiken till de svenska hamnarna är viktig för bedömningen av utsläppsriskerna. Även tankfartygstrafiken på hamnar i andra länder kring Östersjön är emellertid av största betydelse för den totala riskbedömningen. Exempelvis är tankfartygstrafiken genom Bornholmsgattet, mellan Bornholm och den skånska kusten, intensiv och minsta avståndet till svenska kusten är där endast 20–25 km.

Sedan 1998 har råoljeimporten till Europa ökat och en påtaglig förändring är att importen från Mellanöstern har minskat medan importen från Ryssland och övriga före detta sovjetrepublik har fördubblats. En stor del av denna ökade mängd ryska olja transporteras sjövägen över Östersjön.

Framtida förändringar i transportmönstret: Enligt det danska konsultföretaget COWI förväntas transportvolymerna av olja och oljeprodukter i länderna runt Östersjön öka med 1,4 procent årligen framöver. Under perioden 1995–2017 beräknas transportvolymerna öka med sammanlagt 40 procent. Denna prognos är emellertid ganska osäker, eftersom transport-volymerna av olja är beroende av världsmarknadspriset. Det finns också osäkerheter angående hur mycket de planerade nya oljeterminalerna i Ryssland kommer att bidra till den totala ökningen.

Ökningen av de volymer som man räknar med kommer att hanteras i ryska, estniska, lettiska och litauiska hamnar kommer även att medföra en ökning av tankfartygströrelserna.

Bild: Oljehanteringen (miljoner ton) år 2000 samt prognos för år 2015 för några expansiva hamnar i Estland, Finland, Ryssland (Finska viken) och Lettland och Litauen (Egentliga Östersjön). Källa: VTT, 2002
Konstruktion av och regler för tankfartyg

För att minska riskerna för oljeutsläpp vid kollisioner och grundstötingar med tankfartyg har IMO utarbetat internationella regler för hur fartygen skall konstrueras och hur äldre fartygstyper successivt skall ersättas av nya säkrare konstruktioner.

- **Kategori 1: pre-MARPOL-tankfartyg:** Oljetankfartyg 20 000 dwt med last av råolja, brännolja, tung diesel eller smörjolja och oljetankfartyg 30 000 dwt med last av med last av andra oljeprodukter som inte är konstruerade enligt kraven om segregerade ballasttankar med skyddande placering (protectively located segregated ballast tanks). Dessa fartyg har enkelskrov och byggdes under perioden före 1980. Denna kategori av fartyg kommer inte att tillåtas från år 2007.

- **Kategori 2: MARPOL-tankfartyg:** Oljetankfartyg 20 000 dwt med last av råolja, brännolja, tung diesel eller smörjolja och oljetankfartyg 30 000 dwt med last av med last av andra oljeprodukter som är konstruerade enligt kraven om segregerade ballasttankar med skyddande placering (protectively located segregated ballast tanks). Dessa fartyg har enkelskrov och byggdes främst under perioden 1980–1996. Denna kategori av fartyg kommer inte att tillåtas från år 2015.

- **Kategori 3: mindre tankfartyg:** Oljetankfartyg 5 000 dwt men mindre än de som specificerats för kategori 1 och 2. Denna kategori av fartyg kommer inte heller att tillåtas från år 2015.

Vissa oljeprodukter, exempelvis sådana som kräver särskild kraftig uppvarmning transporteras inte sällan med fartyg som konstruerats enligt reglerna för kemikalietankfartyg (MARPOL Annex II). Dessa regler är strängare vad beträffar krav på skydd mot lastläckage vid kollision och grundstötning. Riskerna för olycksorsakade utsläpp av oljelast från sådana fartyg kan därför anses mindre än för de äldre typerna av oljetankfartyg.

Många fartygstyper, såväl olje- och kemikalietankfartyg som gastankfartyg och torrlastfartyg, är konstruerade så att bunkerolja förvaras i bottentankar mellan lasttankar/lastlåda och den yttre skrovbotten. En grundstötning kan då, även om endast det yttre skrovet skadas, leda till utsläpp av bunkerolja. Även om det i dag inte finns några formella krav om var tankarna för bunkerolja skall vara lokalisera, är trenden ändå att dessa tankar i nya fartyg placeras innanför det inre skrovet,

Den genomsnittliga storleken på oljetankfartygen har tenderat att öka under de senaste åren. Exempelvis ökade den genomsnittliga storleken på tankfartyg som anlände hamnen i Muuga i Estland från 19 000 ton år 1998 till 41 900 ton år 2001. Genom en enkätundersökning i de fem största oljehamnarna runt Östersjön har det framkommit att andelen enkelskrovsfartyg och fartygens medelålder varierar mellan dessa hamnar men att
andelen fartyg med enkelskrov överlag är relativt hög. Som jämförelse kan noteras att i princip alla (ca 99 procent) tankfartyg som anlöper Stockholms hamnar har dubbel botten eller dubbelt skrov.

Världshandelsflottan av alla typer av tankfartyg bestod år 2002 av ca 9 000 fartyg. Av dessa har ca 2 800 fartyg en storlek på mellan 20 000 och 150 000 DWT. Fartygens åldersfördelning framgår av bilden. En betydande andel av tankfartygsflottan byggdes således under den period då kategori 2-fartyg dominerade. Källa: Fairplay

<table>
<thead>
<tr>
<th>Storleksklass, dwt</th>
<th>Dubbel sida</th>
<th>Enkelskrov</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>antal</td>
<td>milj. dwt</td>
</tr>
<tr>
<td>5 000 – 19 999</td>
<td>6</td>
<td>0,1</td>
</tr>
<tr>
<td>20 000 – 59 999</td>
<td>30</td>
<td>1,3</td>
</tr>
<tr>
<td>60 000 – 79 999</td>
<td>19</td>
<td>1,2</td>
</tr>
<tr>
<td>80 000 – 119 000</td>
<td>60</td>
<td>5,6</td>
</tr>
<tr>
<td>120 000 – 199 999</td>
<td>10</td>
<td>1,5</td>
</tr>
<tr>
<td>200 000 +</td>
<td>7</td>
<td>2,1</td>
</tr>
<tr>
<td>Totalt</td>
<td>132</td>
<td>11,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storleksklass, dwt</th>
<th>Dubbel botten</th>
<th>Dubbelt skrov</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>antal</td>
<td>milj. dwt</td>
</tr>
<tr>
<td>5 000 – 19 999</td>
<td>124</td>
<td>1,2</td>
</tr>
<tr>
<td>20 000 – 59 999</td>
<td>114</td>
<td>4,3</td>
</tr>
<tr>
<td>60 000 – 79 999</td>
<td>9</td>
<td>0,6</td>
</tr>
<tr>
<td>80 000 – 119 000</td>
<td>11</td>
<td>1,2</td>
</tr>
<tr>
<td>120 000 – 199 999</td>
<td>9</td>
<td>1,2</td>
</tr>
<tr>
<td>200 000 +</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>Totalt</td>
<td>268</td>
<td>8,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hamn</th>
<th>Augusti 2000</th>
<th>Maj / Juni 2001</th>
<th>Medelålder på fartyg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DH</td>
<td>DB</td>
<td>SH</td>
</tr>
<tr>
<td>Muuga (Estland)</td>
<td>39 %</td>
<td>22 %</td>
<td>39 %</td>
</tr>
<tr>
<td>St. Petersburg (Ryssland)</td>
<td>i.u.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sköldvik (Finland)</td>
<td>i.u.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klaipeda (Litauen)</td>
<td>i.u.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventspils (Lettland)</td>
<td>i.u.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DH = dubbelt skrov, DB = dubbel botten, SH = enkelt skrov (Källa: VTT 2002)
Som en följd av utfasningsreglerna för enkelskrovsfartyg kommer andelen tankfartyg med dubbelskrov att öka medan andelen fartyg med enkelskrov successivt kommer att minska fram till år 2015. Från och med då kommer alla oljetransporter att ske med tankfartyg med dubbelskrov.

![Diagram](image)

Bilden visar hur den procentuella fördelningen mellan dubbelskrov (DH) och enkelskrov (SH) har förändrats sedan 1991 och hur den kommer att förändras fram till år 2010 för hela den internationella tank-fartygsflottan. Källa: Intertanko, 2002

Alla nybyggda fartyg över 300 brutto och sysselsatta i internationell trafik skall vara utrustade med ett **automatiskt identifikationssystem (AIS)**. Existerande passagerarfartyg och tankfartyg skulle ha installerat systemet senast 1 juli 2003, medan övriga fartyg över 50 000 brutto skall ha installerat systemet senast 1 juli 2004. Genom HELCOM har Östersjöländerna enats om rekommendationer att inte medge någon förlängning av utfasningsprogrammet, att elektroniska sjökort skall likställas med papperssjökort, att AIS skall utnyttjas för övervakning av trafiken i hela Östersjöområdet, att ett gemensamt system för utredning av sjöolyckor skall finnas och att en plan för fartyg att ha möjlighet att söka nödhamn skall upprättas.

Även olyckor med andra fartyg än tankfartyg kan ge betydande oljeutsläpp. Grundstötningar kan ge stora utsläpp av diesel eller tung brännolja beroende på fartygstyp. Fartyg med dubbelskrov botten kan ha upp till 5 000 ton bunker, fördelat på upp till tio tankar.

Möjliga utsläppsscenarier

Tankfartygsolyckor

Endast ett fåtal olyckor med oljeutsläpp över 700 ton har inträffat i Östersjön. Den senaste större olyckan inträffade i mars 2001 i vattnet vid tysk-danska gränsen, då bulkfartyget *Tern* kolliderade med tankern *Baltic Carrier* som hade råkat ut för ett fel i styrmaskin. *Baltic Carrier* hade en last av 33 000 tung brännolja, lastad i Muuga i Estland. En tank med 2 700 ton sprang läck vid collisionen. Av detta togs cirka 1 100 ton omhand till sjöss, medan inalles 2 850 ton olja och oljeförorenade massor omhändertogs på stränderna. Eftersom oljan var mycket trögflytande kunde endast gripskopor och andra mekaniska verktyg användas vid bekämpning och sanering.

I samband med lastning och lossning i hamnar och vid oljeterminaler sker ofta mindre utsläpp försakade av felgrepp vid hantering av utrustning. Utsläpp från oljecisterner kan variera i storlek och, beroende på belägenhet, försaka stora saneringsinsatser och kostnader.

Inom ramen för HELCOM-projektet ”An updated assessment of the risks for oil spills in the Baltic Sea Area” har olika spridningsmodeller studerats och nya utsläppsscenarier presenterats. Nästa steg i projektet planeras bli att kombinera statistisk information om sjötrafiken i Östersjön med specifika sannolikhetsvärden för olika typer av olyckor och utsläpp.

Operationella utsläpp från fartyg

Utsläpp som kommer från fartygens normala drift betecknas vanligen som operationella utsläpp. Sådana utsläpp är ofta små och görs av flera orsaker – bristande kunskaper om gällande regler, dåligt miljömedvetande ombord på fartygen, svårigheter att lämna oljerester och annat oljehaltigt avfall i hamn, liten risk för upptäckt och liten risk för straffpåföljd.

Även om antalet stora utsläpp orsakade av fartygsoleyckor inom svenskt ansvarsområde hittills varit relativt litet har antalet avsiktliga småutsläpp – s.k. operationella utsläpp – under flera perioder varit tämligen högt.

Operationella utsläpp kan bestå av förörenat ballastvatten, spolrester från tankrengöring, slagvatten, länsvatten från maskinrum och kölar, samt oljerester. Volymen olja i tillåtna operationella utsläpp kan variera från obetydliga volymer i relativt rena slagvatten till många tiotals ton vid rengöring av stora och starkt förörenade tankar. Inom Östersjöområdet som är specialområde enligt MARPOL-konventionen gäller särskilt stränga regler för operationella utsläpp från fartyg.

Utöver de konstaterade utsläppen finns dock ett stort mörkertal. Vad gäller antal och volymer bedöms de faktiska utsläppen inom svensk ansvarszon kunna uppgå till det dubbla av vad som registrerats. Oljerester från fartygsdrift blandas ofta upp med rengörings- eller lösningsmedel så att de hinner lösa upp innan de upptäcks och registreras av Kustbevakningen. Antalet bekämpningsinsatser till sjöss har i stort sett varit oförändrat under perioden, eftersom volymerna olja i flertalet operationella utsläpp varit för små för att medge en effektiv bekämpningsinsats.

I ett längre perspektiv kan man konstatera att större operationella utsläpp från tankrengöring har minskat kraftigt. En viktig anledning till detta torde vara de internationella reglerna om fartygens konstruktion (system för s.k. crude oil washing samt segregerade ballasttankar).

En annan viktig faktor är att de internationella bestämmelserna om att det skall finnas mottagningsanläggningar för oljeavfall i hamnarna nu börjar ge resultat (se vidare diskussionen om risk eller riskreduktion genom Östersjöstrategin respektive EG-direktivet om mottagningsanläggningar.)

Oljeutvinning till havs

I takt med att tekniken utvecklats har också gränserna för vid vilka djup och under vilka klimatförhållanden som prospektning och utvinning är möjlig flyttats. Utvecklingen i Nordsjön, Nordostatlanten, Norska Havet och Barents Hav är ett tydligt exempel på denna trend. I dag svarar oljeutvinningen till havs för cirka 30 procent av den totala oljeproduktionen i världen. För naturgas är motsvarande siffror cirka 50 procent av den totala produktionen. Enligt det amerikanska National Research Council fanns år 1999 cirka 8 300 plattformar i drift runt om i världen.

Prospektning och utvinning av olja till havs liksom transporten av oljan från plattformarna via pipeliner eller tankfartyg innebär risker för såväl operationella oljeutsläpp som utsläpp i samband med olika typer av olcykor.

De operationella utsläppen från plattformarna sker främst via förorenat borrkax, borrslam och utsläpp av produktionsvatten. Avvecklingen av plattformar som tjänat ut är också ett potentiellt miljöproblem.

Olcykor i samband med oljeutvinning till havs sker oftast i form av s.k. blow-outs (utblåsningar), vilket innebär att man tappar kontrollen över oljekällan och att oljan kan höjda fritt eftersom trycket i källan är högre än ytan. Normalt skall det finnas avståndsmålarventiler men om dessa av någon anledning inte fungerar så kan flödet bli okontrollerbart. Det hittills sannolikt största oljeutsläppet till havs (mer än 500 000 ton) skedde i samband med lång tid utsläpp av en oljekälla i Ixtoc-fältet utanför den mexikanska kusten 1977-78. Utsläppet som pågick under lång tid resulterade i mycket stora skador på räkfisket i regionen och i omfattande oljeförorening av stränder. I Nordsjön inträffade år 1977 en större utblåsning från en norsk plattform i Ekofiskfältet. Totalt släpptes cirka 40 000 ton olja ut under 10 dagar.

Utsläpp av utvinnt olja, vatten eller oljeprodukter som används för att transportera oljan i reservoaren till borrhållet när oljan inte kan utvinnas under självttryck. Produktionsvatten är det vatten som naturligt finns i oljereservoaren samt det s.k. injektionsvatten som används för att transportera oljan i reservoaren till borrhållet där oljan inte kan utvinnas under självttryck. Produktionsvatten pumpas antingen tillbaka ner i hålet eller släpps efter rening ut i havet. Allteftersom mängden olja i reservoaren minskar ökar vattenmängden i oljan och i de flesta äldre fält producerar därför betydligt mera vatten än olja. Produktionsvatten innehar en lång rad naturligt förekommande ämnen inklusive naturligt förekommande radioaktiva ämnen, tungmetaller och andra miljögifter och dessutom ett antal kemikalier som tillsattes till vattnet. När oljereservoarerna blir äldre måste flera typer och större mängder kemikalier användas på grund av den ökande mängden vatten i oljan. Utsläppen av produktionsvatten utgör idag den största föroreningskällan från oljeutvinningen till havs.

Erfarenheterna från Nordsjön visar att oljeförorenat borrkax utgör den största källan till olje- förorening av bottnarna kring produktionsplattformarna. Runt enstaka norska plattformar har påverkan i form av ändrad sammansättning av bottenfaunan kunnat visas på upp till 100 km² havsbotten. I vissa områden med intensiv provborning eller produktion har signifikant högre koncentrationer av olja i sedimenter uppmätts på 5–10 km avstånd från utsläppsskallorna jämfört med bakgrundshalten. En mera storskalig utbredning av oljeförorenade sediment kan också observeras ju längre tid som utvinningen pågår i ett visst område. Som en följd främst av de
minskade utsläppen har den genomsnittliga oljepåverkade bottenytan runt platfformarna succedd- sivt minskat från i genomsnitt 10–14 km² per plattform under perioden 1990–1994 till 0,7–4 km² under perioden 1996–1998.

Enligt världsstatischen är sannolikheten för en omfattande olycka ungefär 1 på 13 000 borrh- ningar. Eftersom statistiken huvudsakligen är baserad på borningar i havsområden med svårare förhållanden (större djup, grövre sjö) än vad som normalt råder i havsområdena i Sveriges närhet kan man förutsätta att sannolikheten för en större olycka i vårt närområde är betydligt mindre. Det kan också noteras att risken för en utblåsning är liten, eftersom det råder undertryck i havsbotten i Östersjön. Samtidigt måste man beakta att även ett mindre utsläpp i Östersjön, exempelvis under isförhållanden, kan vara mycket svårt att bekämpa effektivt.

Produktionskapaciteten vid plattformen Baltic Beta (fält B3, Polen) uppgår till ca. 15 000 fat per dag. Den årliga produktionen har successivt ökat från ca 20 000 ton startåret 1992 till ca 310 000 ton år 2000. Källa: Petrobaltic 2002

Det oljeutvinningsprojekt som tycks ligga närmast i tiden för Östersjöns del gäller ryska Kaliningrad. Även i den lettiska sektorn har ett nytt område öppnats för exploatering.

Även om oljeutvinning till havs för närvarande inte förekommer i vad som kan betecknas som riktigt stor skala i Östersjön har länderna uppmärksammat behovet av en internationell reglering av sådan verksamhet. Redan år 1988 antog HELCOM en rekommendation om utforskning och exploatering av havsbottnen och dess tillgångar.

Vid HELCOM-mötet 1998 antogs en rekommendation om beredskapsplaner och vad som bör ingå i dessa. Rekommendationen innehåller också krav på informationsutbyte mellan länderna om planerade eller pågående offshoreverksamheter, vilka utsläpp som kan komma att ske och om de beredskapsåtgärder som vidtagits. Enligt reglerna skall oljeförorenat borrkax transporteras till land och halten olja i produktionsvatten får normalt inte överstiga 15 mg/l (15 ppm). I Helsingforskonventionens artikel 7 ställs krav på miljökonsekvensanalyser av verksamheter som kan medföra gränsöverskridande miljöeffekter.

Oljepåslag på stränder
Sett i ett internationellt perspektiv har flertalet oljepåslag i den svenska strandzonen varit små men har trots detta orsakat stora kostnader för sanering när oljan nått stränderna. De speciella ekologiska förhållandena i de svenska skärgårdarna i Östersjöområdet – brackvatten, låg vattentemperatur, låg vattenomsättning, litet medeldjup – gör att även små utsläpp i en sådan känslig miljö kan leda till betydande miljöeffekter.

De större sjöarna – Vänern, Vättern och Mälaren, som samtliga är viktiga dricksvatten – har dessbättre hittills varit förskonade från större oljeutsläpp. Det har emellertid funnits tillbud.

Det största utsläppet i svenska farvatten sedan Thuntank 5 skedde 1990 från tankern Volgoneft och drabbade Karlskrona skärgård. Mängden utsläppt olja beräknas ha uppgått till cirka 1 000 ton. Trots att Kustbevakningen lyckades ta upp nästan all olja innan den hann driva in mot land uppstod skador på stränderna till en kostnad av drygt 1,7 miljoner kronor. Kostnaderna för Kustbevakningens insats var vid detta tillfället 17 miljoner kronor.

Terroristangrepp

Ett känt terroristangrepp, med betydande oljeutsläpp som följd, utfördes mot det franska tankfartyget Limburg (299,364 DWT) den 6 oktober 2002 utanför Yemen. Limburg rammades av en båt lastad med sprängämnen. En tank med 13 500 ton skadades och antändes. Totalt hade fartyget 54 000 ton arabisk råolja ombord.

En generellt ökad riskbild i samhället från terroristangrepp innebär även en ökad sannolikhet för händelser/aktioner som medför stora oljeutsläpp. Beredskap och planering inför eventuella terroristhandlingar innefattar samordning och organisation mellan olika myndigheter både inom Sverige och internationellt.

Faktorer som kan öka eller minska risken för oljeutsläpp i vattenmiljöer

Trafikflödesintensitet
Den förväntade och planerade expansionen av de ryska, estniska, lettiska och litauiska hamnarna innebär att man kan räkna med en ökad intensitet i trafikflödet i det svenska närområdet. Detta gäller både för antalet tankfartygsrörelser och för de totala volymerna olja och oljeprodukter som kommer att transporteras. Ökningen kommer att ske trots att ingen dramatisk förändring förväntas ske vare sig av antalet fartygsrörelser eller av de volymer olja som transporteras till eller från svenska hamnar.

Rutterna för oljetransporter från de ryska, estniska, lettiska och litauiska oljeterminalerna medför en risk för att eventuella utsläpp kan förorena svenskt vatten och svenska stränder. Den förväntade ökningen i trafikintensitet innebär en ökning av risken för oljeutsläpp p.g.a. fartygsolyckor och risken kan antas stå i proportion till trafikökningen. Sannolikheten för t.ex. kollisioner eller grundstötningar kan antas vara en funktion av antalet fartygsrörelser, medan konsekvenserna av olyckor och utsläppens omfattning är beroende bl.a. av fartygens storlek och de oljevolymer som transporteras.

Den internationella olycksstatistik för oljetankfartyg under senare år visar att antalet olyckor minskar, trots att transporterarna samtidigt ökat. Det är sannolikt en rad olika faktorer som bidra till denna utveckling.

Möjligheter att lämna oljehaltigt avfall i hamn
Som nämnts har antalet operationella utsläpp i svenska vatten under många år varit relativt stort, men enligt statistiken har antalet sådana utsläpp minskat sedan 1995. Troligtvis beror minskningen på att fartygens besättningar har blivit mer medvetna om vilka regler som gäller, liksom på möjligheterna till bättre övervakning av fartygstrafiken, bättre möjligheter för fartygen att lämna oljehaltigt avfall i hamnarna samt att risken har ökat för att verkligen ställas inför rätta om ens fartyg ertappas med olagliga utsläpp.
Till följd av att länderna har olika synsätt på finansieringen av mottagningsanordningarna i hamnarna i enlighet med Östersjöstrategin respektive EG-direktivet om mottagningsanläggningar finns skillnader i synen på frågan om kostnadstäckning och frågan om obligatoriskelandlämning.

Skillnaden i kostnadstäckningssystem mellan Östersjöstrategin och EG-direktivet får till följd att hamnarna i Östersjöområdet, med sitt no special fee-system, kommer att framstå som dyrare, eftersom de är tvungna att ta ut full avgift för nytjande av sina anläggningar. Man kan också på goda grunder misstänka att fartyg som anlör hamnar utanför Östersjöområdet genom dumpingning till sjöss kommer att minimera de mängder avfall de behöver lämna i land för att därmed minska sina avfallskostnader. Även detta kommer givetvis att bidra till en ökad skillnad i kostnader mellan hamnarna i Östersjön och övriga Europa. Fartyg som seglar mellan hamnar i Östersjöområdet och hamnar i övriga Europa kommer sannolikt att behålla det avfall ombord som annars skulle ha lämnats i land i en hamn utanför Östersjöområdet. Fartyget väntar tills man anlör en hamn inom Östersjöområdet, eftersom man ändå måste betala en fast avgift i denna hamn oavsett den avlämnade mängden avfall. Om avfallet däremot hade lämnats i en EU-hamn utanför Östersjöområdet betalar man en hamnavgift som delvis inkluderar kostnaderna för avfallshantering (minst 30 procent) samt en rörlig avgift som står i direkta relation till den landlämnade mängden avfall.

Svenska hamnar, vilka i enlighet med lagen om åtgärder mot förorening från fartyg sedan drygt 20 år tillämpar no special fee-systemet, har stor erfarenhet av de negativa effekterna av att ett sådant finansieringssystem inte tillämpas i hamnar utanför Sverige. Så får t.ex. de svenska hamnar som har linjebunden trafik på hamnar i Nordsjöområdet och på övriga kontinenten utanför Östersjöområdet fortfarande ta emot så gott som allt det avfall som rätteligen skulle ha avlämnats i någon av dessa andra hamnar. Detta har medfört att ett flertal svenska hamnar tillämpar egna regler för att begränsa de avfallsmängderna som de måste ta emot. Sjöfartsverket hyser emellertid goda förhoppningar om att detta skall kunna stävjas i och med att de svenska hamnarna nu kommer att bli tvungna att redovisa sina avfallshanteringsplaner för verkets godkännande.

För att komma tillräckta med de eventuella negativa följderna av nuvarande kostnadstäckningsystem i enlighet med EG-direktivet, innehåller direktivet dock en punkt som säger att EU-kommissionen inom tre år efter det att direktivet trätt i kraft skall lägga fram en utvärderingsrapport om effekterna på den marina miljön och avfallsströmmarna. Rapporten skall utarbetas i samarbete med medlemsstaternas behöriga myndigheter och företrädare för hamnarna. Kommis- sionen skall vid behov och mot bakgrund av utvärderingen lägga fram ett förslag om en ändring av direktivet. Detta skulle i så fall vara inrättande av ett system som innebär att alla fartyg som anlör någon av medlemsstaternas hamnar skall erlägga en avgift som motsvarar en lämplig procentsats, dock inte mindre än en tredjedel av kostnaderna för mottagnings, bortskaffning och behandling av avfallet, oberoende av om fartygen utnyttjar anordningarna, eller ett alternativt system som ger motsvarande resultat. Detta behöver alltså inte innebära att Kommissionen kommer att föreslå ett hundraprocentigt no special fee-system.

Tyskland är den stat som har haft de största farhågorna med olika kostnadstäckningssystem inom och utanför Östersjöområdet. Dessa farhågor har framförts vid förhandlingarna både i HELCOM och EU. Oron grundas på de konkurrenssnackdelar de tyska hamnarna i Östersjön kan få i relation till de tyska hamnarna i Nordsjön. Skillnaden i kostnadstäckningssystem har gjort

Hamburg, Bremerhaven, Antwerpen, Amsterdam och Rotterdam, samtliga vid Nordsjökusten, är de största konkurrenterna till ett flertal danska och svenska hamnar. Godset kan med en relativt ringa kostnadsökning transporteras landvägen till och från kontinenten. Om farhågorna växer hos hamnarna i Östersjöområdet vad gäller konkurrensen med hamnarna inom övriga EU finns anledning att befara att Östersjöstrategin inte kommer att kunna genomföras på det sätt som den är tänkt. Detta skulle i hög grad äventyra Östersjöns miljö.

Ett enhetligt system skulle således bevara konkurrensneutraliteten, samtidigt som hamnarna i Östersjöområdet inte skulle finna anledning att färma sig från Östersjöstrategin. Östersjöhamnarnas trafik utanför Östersjöområdet är avgjort störst på Nordsjöområdet. Med rådande system får hamnarna i Östersjön ta emot avsevärt större kvantiteter avfall än vad de skulle behövt göra med ett mellan Östersjö- och Nordsjöhamnar enhetligt system. Ett enhetligt system skulle förhindra ”avfallsturism” och skapa större rättvisa hamnarna emellan.

Tankfartygsflottans sammansättning: ålder och standard
Vad gäller ålder och standard på flottan av tankfartyg så varierar säkerhetsstandarden och den strukturella konditionen mellan olika fartyg. Det är större risk för oljeutsläpp till följd av olyckor när trafiken sker med fartyg som är underratliga vad gäller både säkerhet och konstruktion (sub-standard ships). Det går emellertid inte att enbart på grundval av statistiska uppgifter om olyckor och utsläpp direkt styrka att det finns samband mellan tankfartygens ålder och riskerna för oljeutsläpp.

Hamnstatskontroll

Utfasning av enkelskrovstankfartyg
Risken för utsläpp av olja från lasten i tankfartyg med dubbelskrov är mindre än från fartyg med enkelskrov. Den dubbla skrovkonstruktionen ger dock främst skydd mot utsläpp vid collisioner och grundstötningar i låg fart. Om farten är hög är risken stor att både det yttre och inre skrovet skadas.
Vid jämförelser mellan pre-MARPOL-fartyg och MARPOL-fartyg kan det vidare noteras att de segregerade ballasttankarna ger fartygen högre fribord än pre-MARPOL-fartygen och att oljenivån i lasttankarna därmed också är högre i förhållande till havsytan än för pre-MARPOL-fartyget. Om det går hål i fartygets botten är nivåskillnaden mellan oljan i den skadade lasttanken och havsnivån av avgörande betydelse för hur stor oljevolym som strömmar ut innan hydrostatisk jämvikt uppnås. I detta avseende kan risken för stora utsläpp vid bottenpenetration antas vara större för MARPOL-fartyg än för pre-MARPOL-fartyg.

Även om man inte på något entydigt sätt kan kvantifiera effekterna av dubbelskroveskonstruktioner i termer av minskad risk för oljeutsläpp, bidrar utfasningen av enkelskorvsfartyg, de s.k. pre-MARPOL och MARPOL-fartygen, till att världsflottnan på sikt kommer att bestå av säkrare fartyg för transport av olja och oljeprodukter. Man kan förutsätta att de nybyggda fartygen i första hand kommer att bestå av oljeutsläpp, bidrar utfasningen av äldre fartyg med enkelskrov, som sker i enlighet med besluten inom ramen för MARPOL-konventionen, till att minska riskerna för olyckor. Även i länderna kring Östersjön har det på senare tid höjts allt fler röster för att införa regionala strängare regler för Östersjöområdet i syfte att ytterligare begränsa eller stoppa trafiken med tankfartyg med enkelskrov i området. Om Östersjöstaterna och IMO skulle kunna enas om sådana regler skulle det kunna innebära en väsentlig minskning av riskerna för olyckor.

Utökad fartygstrafikinformation

En funktion för s.k. VTS (Vessel Traffic Service) eller VTIMS (Vessel Traffic Information and Management System) finns för vissa av de mer trafikerade hamnarna och särskilt tättrafikerade farledsområden. Från en landbaserad station får fartygen i området via radio information om andra fartygsrörelser i området och andra eventuella hinder med mera. VTS-centralen i land sammanställer sin lägesbild utifrån inrapporterade fartygspositioner, radarbilder och i framtiden även utifrån AIS-information (Automatic Identification System).

Införande av transponderteknik

Införandet av ISM-koden

Klimatfaktorer

Det finns yttre faktorer som påverkar riskerna för oljeutsläpp. Svenska farvatten har vissa karaktäristiska drag som hänger samman med vårt klimat och de oceanografiska förhållandena i havsområdena kring Sverige. Det faktum att vi har en lång vintersäsong med lite dagsljus, ofta i kombination med istäckta havsområden, samt att behovet av oljetransporter ofta är stort inför och under vintersäsongen, är ett särdrag som kan anses vara riskhöjande.

Olika allvarliga konsekvenser beroende på oljetyper

Att riskerna för oljemycken som en följd av att oljetransporterorna från ryska, estniska, lettiska och litauiska hamnar ökar har nämnts. Det är emellertid också av intresse att övervåga om det förändrade transportmönstret även innebär att fördelningen mellan olika oljetyper och produkter förändras eller om nya oljetyper tillkommer, som innebär att de förväntade konsekvenserna av ett oljeutsläpp förändras.

Från de ryska, estniska, lettiska och litauiska hamnarna skeppas främst rysk råolja (s.k. Mazudolja) och tunga brännoljor (HFO) ut. Mazudolja har egenskaper som avsevärt skiljer sig från exempelvis den typ av råolja från Nordsjön som dominerar den svenska råoljeimporten. Vid ett eventuellt utsläpp kommer den relativt trögflytande Mazudoljan, till skillnad från en mer lättflytande Nordsjöråolja, endast i liten omfattning att avdunsta eller lössas upp genom naturliga processer.

Eftersom de tunga brännoljorna har egenskaper som gör dem relativt okänsliga för naturliga förändringsprocesser, krävs vanligen bekämpning och sanering för att avlägsna tjocka och klibbiga oljesjok i vattnet och på land. En sådan situation uppstod vid den galiciska kusten efter förlisningen av tankfartyget Prestige, som hade cirka 70 000 ton tung brännolja ombord.
Det kan inte heller uteslutas att transporterna av olja och oljeprodukter i Östersjön och i svenska vatten i framtiden i högre grad kan komma att omfatta även olika typer av oljer med högre täthet än vatten. Vid ett utsläpp sjunker sådana oljer till bottnen, vilket ger helt andra utsläppskonsekvenserna och förutsättningar för bekämpning och sanering.

En oljetyd som bedöms kunna öka i omfattning på vissa marknader är produkten Orimulsion. Konsekvenserna av och förutsättningar för bekämpning av utsläpp av sådan olja skiljer sig också avsevärt från andra oljetyper.

Sammanfattande bedömning av riskerna för oljeutsläpp
Inga kvantitativa riskbedömningar kan göras på grundval av det material som sammanställts här. För att möjliggöra en noggrannare riskbedömning, inkusive kvantitativa bedömningar och identifiering av geografiskt särskilt kritiska områden, krävs en mera ingående analys än vad som här varit möjligt. Dock går det att identifiera några signifikanta förändringar som kan förväntas av dagens riskbild. Riskbedömningarna görs med utgångspunkt från tendenser som kan skönjas i statistiken och på de planer som finns och prognoser som gjorts för framtid och expansion av hamnverksamheten i flera av länderna kring Östersjön. Som nämnts tidigare har ett antal internationella regelverk påverkat och kommer också framdeles att påverka riskbilderna och delvis kunna kompensera nämnda riskökningar.

Förändringar/trender som medför minskad risk
Bland det som har bidragit eller förväntas komma att bidra till att riskerna för oljeutsläpp minskar i framtiden kan bland annat följande förändringar noteras:
- Antalet registrerade små operationella utsläpp minskar.
- Andelen enkelskrovtankfartyg minskar på sikt och bidrar till en förnyring av fartygsflottan, vilket minskar konsekvenserna av grundstötningar och kollisioner.
- Införandet av nya regelverk, såsom ISM-koden och STCW-konventionen, har medfört att säkerhetskraven ökat. Detta bidrar till en allmänt ökande medvetenhet kring miljöfrågor och säkerhet.
- Utbyggnad av VTS-system, exempelvis i Finska viken, förväntas ge effekt i form av minskade risker för olyckor.
- Utbyggnad av AIS underlättar säker navigering och minskar olycksriskerna.

Förändringar/trender som medför ökad risk
Det finns dock även ett antal faktorer och förhållanden som bidrar till att öka riskerna för olyckor med oljeutsläpp, exempelvis följande:
- Fartygstrafiken i Östersjön ökar. En ökning förväntas för såväl antalet fartygsrörelser som volymerna olja som transporteras. Därmed ökar sannolikheten för utsläpp, främst till följd av kollisioner och grundstötningar.
- Terroristhandlingar har identifierats och uppmärksammat som realistiska hot mot exempelvis fartyg och offshoreinstallationer.
På kort sikt kan det inte uteslutas att en betydande andel av de ökade oljetransporterna till sjöss i Östersjön kommer att ske med äldre fartyg i dåligt skick och med bekvämlighetsflaggade fartyg som genomgår mindre krävande säkerhetskontroll från flaggstataadministrationen.

Rutinerna för hamnstatskontroller i området är inte harmoniserade. Riskerna för att undermåliga fartyg (sub-standard ships) skall kunna trafikera området och inte bli föremål för hamnstatskontroll bidrar därmed till att öka riskerna.

Sammanvägd bedömning av riskerna
En sammanvägd bedömning av de olika typer av förändringar som redovisats i föregående avsnitt gör det rimligt att anta att riskerna kommer att förskjutas i riktning mot ökad sannolikhet för olyckor med tankfartyg, och då särskilt i Östersjön. Denna bedömning bygger främst på det fakta att trafiken med oljetankfartyg kommer att öka.

Östersjön och övriga svenska farvatten har hittills varit förskonade från stora tankfartygsolyckor och ett flertal åtgärder har vidtagits eller håller på att vidtas för att ytterligare minska riskerna för att sådana olyckor skall inträffa. Bedömningen är ändå att det inte helt går att kompensera den riskökning som en ökad trafik genom Östersjön och vidare genom Kattegatt och Skagerrak kommer att medföra. Dessutom finns inget som tyder på att den väntade trafikökningen, åtminstone inte på kort sikt, kommer att ske med fartyg som uppfyller kraven på bästa säkerhetsstandard. Snarare kan man av hittillsvarande erfarenheter dra slutsatsen att de fartyg som kommer att svara för den ökade trafiken i Östersjön är äldre och håller lägre säkerhetsstandard än exempelvis de fartyg som regelbundet trafikerar svenska hamnar.

Utvärderingar av de åtgärder som vidtagits för att minska antalet operationella utsläpp Östersjöområdet, liksom tillgänglig statistik över antalet faktiska utsläpp, visar att åtgärderna varit effektiva. Det är därför rimligt att anta att de risker som de många och ofta förekommande små operationella utsläppen hittills har medfört kommer att minska i betydelse i den sammanvägda riskbilden för svenska vatten under perioden fram till 2010. Som framgått tidigare är ett av delmålen i det nationella miljömålet för kust och hav att de olagliga oljeutsläppen skall ha upphört till år 2010.
7.8 Förteckning över oljor

Nedan redovisas en lista över bekämpningsbara mineraloljor till havs och i strandzon (MAR-POL-konventionen, Annex I "list of oils"). Mineraloljorna är uppdelade i; asfaltlösningar, oljor, destillat, mellandestillat och gasolja, bensinkomponenter, bensin, flygfotogen och jetbränsle samt nafta.

<table>
<thead>
<tr>
<th>Asfaltlösningar</th>
<th>Basoljor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basämne för oxiderad asfalt</td>
</tr>
<tr>
<td></td>
<td>Direktdestillatets återstod</td>
</tr>
<tr>
<td>Oljor</td>
<td>Klarad olja</td>
</tr>
<tr>
<td></td>
<td>Råolja</td>
</tr>
<tr>
<td></td>
<td>Blandningar innehållande råolja</td>
</tr>
<tr>
<td></td>
<td>Flygbensin</td>
</tr>
<tr>
<td></td>
<td>Dieselbrännolja</td>
</tr>
<tr>
<td></td>
<td>Eldningsolja nr 4, 5, 6</td>
</tr>
<tr>
<td></td>
<td>Återstodsolja</td>
</tr>
<tr>
<td></td>
<td>Vägolja</td>
</tr>
<tr>
<td></td>
<td>Transformatorolja</td>
</tr>
<tr>
<td></td>
<td>Arombasoljer (exklusive vegetabiliska oljor)</td>
</tr>
<tr>
<td></td>
<td>Smörjoljor och basoljor för Smörjmedel</td>
</tr>
<tr>
<td></td>
<td>Mineralolja</td>
</tr>
<tr>
<td></td>
<td>Motorolja</td>
</tr>
<tr>
<td></td>
<td>Metallbearbetningsolja</td>
</tr>
<tr>
<td></td>
<td>Spindelolja</td>
</tr>
<tr>
<td></td>
<td>Turbinolja</td>
</tr>
<tr>
<td>Destillat</td>
<td>Direktdestillerat</td>
</tr>
<tr>
<td></td>
<td>Toppad råolja</td>
</tr>
<tr>
<td>Mellandestillat, gasolja</td>
<td>Krackad</td>
</tr>
<tr>
<td>Bensinkomponenter</td>
<td>Alkylatbränsle</td>
</tr>
<tr>
<td></td>
<td>Reformat</td>
</tr>
<tr>
<td></td>
<td>Polymerisatbränsle</td>
</tr>
<tr>
<td>Bensin</td>
<td>Naturlig lättbensin</td>
</tr>
<tr>
<td></td>
<td>Motorbensin</td>
</tr>
<tr>
<td></td>
<td>Direktdestillat</td>
</tr>
<tr>
<td></td>
<td>Lys- och eldningsfotogen</td>
</tr>
<tr>
<td></td>
<td>Eldningsolja nr 1-D, 2, 2-D</td>
</tr>
<tr>
<td>Flygfotogen- Jetbränsle</td>
<td>Jet-1 (Flygfotogen), Jet 3-4</td>
</tr>
<tr>
<td></td>
<td>Jet-5 (Flygfotogen, tung)</td>
</tr>
<tr>
<td></td>
<td>Turbinbränsle</td>
</tr>
<tr>
<td></td>
<td>Fotogen</td>
</tr>
<tr>
<td></td>
<td>Mineralterpentin</td>
</tr>
<tr>
<td>Nafta</td>
<td>Lösningsmedel</td>
</tr>
<tr>
<td></td>
<td>Processnafta</td>
</tr>
<tr>
<td></td>
<td>Extraktionsbensin</td>
</tr>
</tbody>
</table>
7.9 Resurser för bekämpning till sjöss och för strandsanering

Beredskap för strandsaneringsinsatser i Sverige
I nedanstående tabell visas vilka resurser som finns i Räddningsverkets fem förråd vilka är placerade hos de kommunala Räddningstjänsterna i enlighet med kartan till höger.

<table>
<thead>
<tr>
<th>Materiel</th>
<th>1 Umeå</th>
<th>2 Botkyrka</th>
<th>3 Vänersborg</th>
<th>4 Visby</th>
<th>5 Karlskrona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbetsbåt med motor, stor, 6 m</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Arbetsbåt med motor, liten, 2 m</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Walosep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lastprårmar</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Oil mop</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Minivac & transferpump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lamour Bogcollector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Unisep, miniskimmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>GT-185 skimmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Oljeupptagare Barracuda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cirkus med Mini Well skimmer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Surfcleaner, Vatten-/oljeseparator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Salapump</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alfa-Laval pump</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4- och 6-hjuls MC</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Länssor, 1100, 350, 500, 750 och Brand & sorption</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Barkspridare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Styroder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Högtryckstvätt</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aluminiumcontainer</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Materielcontainer</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Lastväxlarflak</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Förrådscontainer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Oljeavskiljare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>GPS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>System för styrning och inneslutning av olja</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>System för strandskydd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Handmateriel, 20 satser vardera för 5 personer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sorptionsmedel</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Beredskap för bekämpningsinsatser i Östersjön
Östersjöländernas större miljöskyddsfartyg som kan verka i hela Östersjön och deras hemmahamnar.

Läs mer om materiel i de olika länderna www.helcom.fi/CombattingManual/CONTENTS.html
8 Förklaringar av ord och begrepp

Advancing system
Miljöskyddsfartyg som under framfart genom vattnet och med hjälp av sveparmar ut från fartygssidor via borstar eller pumpsystem tar upp olja från vattenytan.

Agenda 21

AIS
Automatic Identification System.

Anlög
Varje gång ett fartyg ankommer till en hamn registreras detta som ett anlög. Antalet anlöp under en tidsperiod visar således inte antalet enskilda fartyg (en passagerarfärja gör t ex många årliga anlöp i samma hamn), utan antalet ankomster.

Ballast/Barlast

Bekämpning
Med oljebekämpning avses här dels insatsen till sjöss på själva utsläppsplatsen, dels de åtgärder som vidtas i kustzonen när olja är på väg in mot stränderna. När oljan väl nått nät stränderna och inte sprids vidare, vidtar sanering.

Biologisk nedbrytning, Biodegradation
Ett stort antal mikroorganismer, särskilt bakterier, i salt- och sötvatten har förmåga att bryta ned oljekolväten till enklare kolväten eller till koldioxid och vatten. Processen tar för lång tid i öppet vatten, men kan användas i strandzonen.

Borrkax, borrslam
Operationella utsläpp sker vid oljeutvinning av bergmaterial som lösjorts vid borrningen (borrkax) förörent med borrslam. Borrsamlet tillsätts som smörjmedel vid borrningen och upprätthåller ett så högt tryck i borrhållet att vatten från omgivande berglager inte tränger in. Slammets transporterar också borrkaxet till ytan.

Bruttodräktighet
Fartygets lastförmåga. Inkludive vikten av bl.a. bränsle, proviant, vatten.

Bulk
Oförpackad last.

Bulkfartyg
Fartyg som tar frakt, t ex av olja, i oförpackad form i sina lastrum eller tankar.

Bunkerolja
Bunkerolja är den olja som används för fartygets egen drift eller hjälpmaskinen, till skillnad från olja som fraktas som last. Bunkeroljan förvaras i särskilda bunkertankar. Tankning av sådan olja kallas bunkring.

Cabotage
Rätten för transportföretag i ett land att utföra inrikes transporttjänster i ett annat land. EU:s cabotageregler ger t ex andra EU-länderns sjöfart rätten att utföra sjötransporter i Sverige.
Crude oil washing (COW)

I enlighet med internationella bestämmelser är stora oljetankfartyg i dag ofta utrustade med utrustning för effektiv tvättning av oljelasttankarna. S.k. crude oil washing innebär att tankarna högtryckspolas med sin egen last (crude oil). Detta tankvatten skall förvaras i s.k. sloptankar och lämnas till särskild mottagningsanläggning i hamn.

Denhet
Täthet.

Dispergering, dispergeringsmedel

Dispergeringsmedel, ofta någon form av tensid, används för att finfördela en vätska i en annan vätska. Dispergering av olja är en ifrågasatt bekämpningsmetod, eftersom oljan inte försvinner utan bara sprids. Kemiska dispergeringsmedel är i princip förbjudna i Sverige och får bara användas med särskilt tillstånd.

Dödvikt

Fartygets lastförmåga. Den mängd last fartyget kan ta, inklusive eget bränsle.

Ekonomisk zon

Kuststater har, enligt Havsrättskonventionen, rätt att utanför territorialgränsen inrätta en exklusiv ekonomisk zon, vilken dock inte får sträcka sig längre ut än 200 nautiska mil räknat från baslinjen. En kuststat har inte absolut suveränitet, som i sjöterritoriet, över den ekonomiska zonen, men har vissa specifiserade suveräna rättigheter t.ex. när det gäller utvinning av olja, gas och mineraler. Samtidigt är alla stater tillfört skyddade de för det fria havet grundläggande s.k. fria havsruvigheterna, såsom rätten till fri sjöfart och överflygning. Generellt sett har en kuststat omfattande befogenhet att, i enlighet med allmänt erkända internationella regler och normer, utfärdar lagar och andra författningar för att bl.a. förhindra, begränsa och kontrollera föroreningar från fartyg i den ekonomiska zonen.

Emulgering, emulsion

När en vätska finfördelas i en annan vätska till mycket små droppar bildas en emulsion. I fråga om olja kan det röra sig om olja-i-vatten emulsion, s.k. naturlig dispergering, eller vatten-i-olja emulsion, s.k. mousse.

Egentliga Östersjön

Östersjöområdet indelas i tre större områden (bassänger), som åtskiljs av trösklar. Egentliga Östersjön räknas från Öresund till Ålands hav. De andra bassängerna är Bottenhavet och Bottenviken, som tillsammans utgör Bottniska viken.

Flyktighet

Vissa komponenter (kolväten) i olja avdunstar relativt snabbt, särskilt i värme och solljus. Oljans förmåga att avdunsta benämns flyktighet.

GIS

Geografiskt informationssystem. Ett datorbaserat system som underlättar analys av geografiska data och ger möjlighet till inmatning, lagring, bearbetning och presentation av sådana data. Olika data knyts till lägesuppgifter i kartor.

GPS

DGPS

Hamnanlöp

Se Anlöp

HELCOM

IMO

FN:s internationella sjöfartorganisation, International Maritime Organization. Har drygt 150 medlemsländer. Se även MARPOL.
Inneslutning
Åtgärder för att "stänga inne" olja som släppts ut i vatten och hindra den från att spridas över ett större område. Inneslutning sker främst med hjälp av mekaniska barriärer som länsor.

Insats
De samlade åtgärder som vidtas för att bekämpa oljeutsläpp till sjöss, på väg in mot stränderna eller i själva strandzonen benämns insats.

ISM-koden
Ett avtal med regler för att kontrollera och följa upp de säkerhetsmål (säkerhetsansvariga, säkerhetssystem och säkerhetspolicy ombord, rapporteringsskyldighet vid ovanliga händelser etc.) man enats om inom sjöfarten. Tillämpningen omfattar rederi, landpersonal, fartøy och besättning.

Koncentration
Åtgärder för att så långt som möjligt ”sama ihop” utsläpt olja i vatten och därmed hindra den från att spridas, respektive underlätta upptagningen med mekaniska metoder.

Kontinentalsockel
Den del av landmassan som fortsätter ut i havet, men på relativt litet djup (högst 200 meters vattendjup). Olje- och gasförråden i havet finns på kontinentalsockeln (eller kontinentalhyllan).

Läktring, läktare
Läktring innebär att t.ex. olja pumpas (lossas) från en oljetanker till ett annat fartøy för vidare transport. Läktare är det fartøy, exempelvis en lastpråm, som tar hand om den lossade oljan. Se även Nödläktring.

Länsa(länsor)
Någon form av mekaniska barriärer, som läggs ut i vattnet för att hindra oljan från att spridas, för att koncentrera oljan eller för att styrta bort den så att den inte når känsliga områden. Länsor tillverkade av absorberande material kan även användas för att ta upp mindre volymer olja.

MARPOL
Internationell konvention med regler om hur den marina miljön skall skyddas från flytande och fasta föroreningar – olja, kemikalier, toalettvatt och hushållsavfall – från fartøy.

Miljöatlas
En miljöhandbok där länsstyrelsen anger vilken skyddsstatus olika kustområden har (t.ex. sälsskyddsområden), skyddsmotiv för områden med särskilt skydd, känslighetsklass beroende på årstid (t ex häckningsperiod för fåglar, kutningsperiod för sälar), samt anvisningar om hur miljöskador skall förebyggas eller åtgärdas.

Miljökonsekvensbeskrivning
Utredning som skall göras för att klarlägga vilka eventuella miljökonsekvenser en viss verksamhet kan få – innan verksamheten sätts igång.

Mousse
Vatten-i-olja emulsion. Se Emulsion.

Nödläktring
För att avvärja risken för att olja som finns kvar ombord på ett skadat fartøy kommer ut i vattnet, tillämpas ofta nödläktring. Oljan pumpas över till ett annat fartøy, vanligen med hjälp av mobila pumpsystem. Se även Läktring.

Oljepåslag
När olja närmar sig eller redan har nått strandzonen betecknas detta som oljepåslag. Styrning av oljan vidtas för att hindra påslag. Sanering sker för att ta hand om olja som hunnit förorena stränderna.

Oljeskadeskydd
Gemensam beteckning på de åtgärder som vidtas för att förebygga respektive bekämpa oljeutsläpp till sjöss och åtföljande förorening av strandzonen.

Oljetankfartyg
Fartyg som är byggt eller anpassat huvudsakligen för transport av olja i bulk i lastutrymmen. Se även Produkttankfartyg.
Orimulsion
En ny oljetyp, som kan beskrivas som en blandning av högdensitiva oljegränulat i vatten (70 procent bitumen och 30 procent vatten).

Operation
Se Insats.

Operationellt utsläpp
Oljetsläpp som görs från fartyg eller oljeplattform vid normal drift. Operationella utsläpp kan bestå av förorenat ballastvatten, sköljvatten från tankrengöring (se COW), slagvatten från maskinrum och kölar, samt oljerester från tankar.

Produktionsvatten
Det vatten som naturligt finns i en oljekälla samt s k injektionsvatten som ibland används för att transporteraräoljan till borrhålet när oljan inte kan utvinnas under självtryck.

Produkttankfartyg
Oljefartyg som fraktar andra oljeprodukter än råolja, t.ex. dieseldjur eller bensin.

Rålja
Varje flytande kolväteblandning som förekommer naturligt i jorden kallas rålja.

Räddningsledare
Den person inom Kustbevakningen eller kommunen som har det yttersta ansvaret för bekämpnings- eller saneringsarbete efter ett oljeutsläpp.

Räddningstjänst
De insatser staten eller kommunerna skall ansvara för vid olyckshändelser och överhängande fara för att hindra och begränsa skador på människor, egendom eller miljö.

Sanering
De åtgärder som vidtas för att samla in olja och oljeörorenat material i strandzonen, tvätta och på annat sätt rengöra stränder som drabbats av oljeörorening.

Saneringsledare
Den person inom den berörda kommunen som har det yttersta ansvaret för en saneringsoperation/insats.

Segregerad ballasttank
En tank, helt skild från lastolje- och bunkeroljesystemet och avsedd att stadigvarande nyttjas för att transporterar ballastvatten eller annan last som inte är olja eller skadliga ämnen.

Sinker
Medel som används för att få olja utsläppt i vatten att sjunka till bottnen. Sådana medel är förbudna i Sverige.

Sjösäp
Mindre farkost lastad med oljelänsor, konstruerad för lastbiltransport samt snabb bogsering till sjöss. Används för att snabbt kunna länsa in ett fartyg som läcker olja.

Skimmer
Oljeupptagare. En anordning som separerar olja och vatten. Används vid upptagning av olja ur vatten.

Slagvatten
Det ”tvättvatten” som bildas vid rengöring av maskinrum och kölar. Innehåller olja.

Sloptank
Den särskilda tank som skall användas för att förvara tankdränering, tankspolvätska och andra oljehaltiga blandningar. Innehållet i sloptankar skall tas om hand i särskild mottagningsanläggning i hamn.

Sorbent
Material som ströjs ut på olja för att absorbera den.
Strandskyddsduk
Förband som används för att mekaniskt skydda stränder från oljepåslag. Syftet är att hindra oljan från att få kontakt med sand, klippor, växtlighet och andra delar av stranden/kusten.

Styrning
Den åtgärd som vidtas för att mekaniskt (oftast med länsor) tvinga utsläppt olja att röra sig en viss riktning. Styrning tillämpas dels för att koncentrera olja till sjöss för att underlätta upptagning, dels för att hindra olja att nå stränderna.

Territorialvatten
Det havsområde som ett land har jurisdiktion över. Det skall dock observeras att delvis olika regler gäller för ett lands inre vatten och dess territorialhav. En stat har enligt reglerna i Havsrättskonventionen full jurisdiktion över sitt inre vatten, men kan inte hindra andra staters fartcy att passera det egna territorialhavet om sådan passage sker i enlighet med artiklarna 17-19 i Havsrättskonventionen om rätten till s.k. oskadlig genomfart (innocent passage) i territorialhavet.

TOBOS 85

Torrlastfartyg (torrlastare)
Fartyg för frakt av produkter/varor som transporterats i styckegodsfartyg (varor i förpackad form), bulkfartyg (kol, malm, spannmål), specialfartyg (kyl- och frysgods, bilatar), skogsproduktfartyg (pappersrullar, timmer), Ro-Ro- och containerfartyg (lastbärare som rullas ombord eller containers som lyfts ombord).

Transferpumpystem
Pumpanordning för överpumpning av olja från ett fartyg till ett annat.

Viskositet
Tröglutfntenhet. En oljas viskositet påverkas av dess förmåga att avdunsta, dess löslighet och dess emulgeringsförmåga. Oljan blir mer tröggluten (viskös) i kalla vatten.

VTIMS
Vessel Traffic Information and Management System

VTS
Vessel Traffic Service

Västerhavet

Östersjön, Östersjöområdet
Östersjöområdet består, räknat från en linje vid Skagen i Skagerrak, av Kattegatt, egentliga Östersjön, Finska viken och Bottniska viken (Bottenhavet och Bottenviken). Benämningen Östersjön (Baltic Sea) bör användas om hela området, men används ibland felaktigt om bara den södra delen, d.v.s. Egentliga Östersjön. Se även Egentliga Östersjön.
Oljeskadeskyddet
utmed de svenska kusterna och i de stora insjöarna inför 2010